Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Porzucone wersje bata algebry Kubusia

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 10:00, 11 Paź 2020    Temat postu: Porzucone wersje bata algebry Kubusia

Porzucone dlatego, że można to samo napisać prościej ...

3.0 Teoria rachunku zbiorów i zdarzeń


Spis treści
3.0 Teoria rachunku zbiorów i zdarzeń 1
3.1 Podstawowe spójniki implikacyjne w zbiorach 1
3.1.1 Definicja kontrprzykładu w zbiorach 2
3.1.2 Prawa Kobry dla zbiorów 2
3.2 Podstawowe spójniki implikacyjne w zdarzeniach 3
3.2.1 Definicja kontrprzykładu w zdarzeniach 4
3.2.2 Prawo Kobry dla zdarzeń 4
3.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 4
3.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 6
3.3.2 Tożsamość matematyczna „==” i logiczna „=” 7
3.3.3 Definicja znaczka różne na mocy definicji ## w teorii zbiorów (pojęć) 9
3.3.4 Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym 10
3.3.5 Definicja znaczka różne # w rachunku zero-jedynkowym 11
3.3.6 Definicja znaczka różne # w teorii zbiorów (pojęć) 13
3.3.7 Nadmierna precyzja 15
3.4 Definicje operatorów implikacyjnych 17
3.5 Zapis formalny i aktualny w logice matematycznej 21
3.6 Punkt odniesienia w logice matematycznej, prawo Kameleona 22
3.7 Prawdziwość/fałszywość zdań warunkowych przy znanej wartości logicznej p i q 28



3.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

3.1 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory nieskończone są rozłączne to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona
Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona
Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

3.1.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

3.1.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem samego siebie.
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

To jest wyjątek identyczny jak w matematyce klasycznej:
Pamiętaj cholero nie dziel przez 0.

3.2 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

3.2.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

3.2.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)


3.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Kod:

T1
Definicja warunku wystarczającego =>
   p  q p=>q
A: 1  1  1
B: 1  0  0
C: 0  0  1
D: 0  1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
   p  q p~>q
A: 1  1  1
B: 1  0  1
C: 0  0  1
D: 0  1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
   p  q p+q
A: 1  1  1
B: 1  0  1
C: 0  0  0
D: 0  1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji
p=>q=~p+q ## p~>q=p+~q ## p+q

Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym:
Dwie kolumny są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

Doskonale to widać w kolumnach wynikowych tabel T1, T2 i T3. Warunek konieczny jaki musi tu być spełniony to identyczna matryca zero-jedynkowa po stronie wejść p i q bowiem wtedy i tylko wtedy możemy wnioskować o tożsamości lub braku tożsamości kolumn zero-jedynkowych. Warunek wspólnej matrycy zero-jedynkowej tabelach T1, T2 i T3 jest spełnione.

Stąd w rachunku zero-jedynkowym wyprowadzamy następujące związki miedzy warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =0    =0        =0    =0        =0
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =1    =1        =1    =1        =1
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Przy wypełnianiu tabeli zero-jedynkowej w rachunku zero-jedynkowym nie wolno nam zmieniać linii w sygnałach wejściowych p i q, bowiem wtedy i tylko wtedy o tym czy dane prawo zachodzi decyduje tożsamość kolumn wynikowych.
##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =1    =1        =1    =1        =1
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =0    =0        =0    =0        =0
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

3.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy:
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B4: q=>p = B2: ~p=>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A3: q~>p = A2: ~p~>~q
##
B1: p~>q = B4: ~q~>~p

Gdzie:
## - różne na mocy definicji

3.3.2 Tożsamość matematyczna „==” i logiczna „=”

Definicja tożsamości matematycznej „==”:
Dwa zbiory (pojęcia) p i q są matematycznie tożsame p==q wtedy i tylko wtedy są w relacji równoważności p<=>q (i odwrotnie).
p==q <=> (A1: p=>q)*(B1: p~>q) = (A1: p=>q)*(B3: q=>p) = p<=>q =1
Inaczej:
p<=>q =0 - zbiory (pojęcia) p i q są różne na mocy definicji ## albo różne # w znaczeniu iż zbiór (pojęcie) p jest zaprzeczeniem q

Przykład:
Definicja tożsamości zbiorów p==q:
Zbiory p i q są matematycznie tożsame „==” wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q i zbiór q jest podzbiorem => p.
p==q <=> (A1: p=>q)*(B3: q=>p) = p<=>q
Dla zbiorów tożsamych p==q mamy:
p==q <=> (A1: p=>p)*(B3: p=>p) = (~p+p)*(~p+p) =1*1 =1
cnd

Weźmy równoważność Pitagorasa dla trójkątów prostokątnych:
RP1.
Trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1
Twierdzenie proste Pitagorasa A1: TP=>SK i twierdzenie odwrotne Pitagorasa B3: SK=>TP udowodniono wieki temu, co oznacza iż zachodzi tu tożsamość zbiorów TP==SK:
TP==SK <=> (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Zauważmy, że de facto zachodzi:
Tożsamość logiczna „=” == Równoważność <=>

Dygresja:
W świecie techniki, w algebrze Boole’a, zawsze używany jest znaczek „=” w rozumieniu równoważności <=> bo … tak jest bardziej czytelne.
Uzasadnienie:
W prawach algebry Boole’a znaczek tożsamości matematycznej „==” nigdy nie występuje, dlatego świat techniki poprawnie stosuje znaczek „=” w rozumieniu tożsamości logicznej <=>.
Dowód choćby tu:
[link widoczny dla zalogowanych]
Gdzie przykładowe prawo De Morgana zapisano tak:
~(p+q) = ~p*~q
zamiast tak:
~(p+q) <=> ~p*~q
U matematyków De Morgan zapisywany jest tak:
[link widoczny dla zalogowanych]
~(p+q) <=> ~p*~q

Dla udowodnionej równoważności Pitagorasa dla trójkątów prostokątnych mamy:
TP<=>SK = ~TP<=>~SK
Prawej strony tożsamości logicznej „=” nie musimy udowadniać bowiem jej prawdziwość wymusza powyższe prawo rachunku zero-jedynkowego.

Stąd mamy:
Równoważność Pitagorasa dla trójkątów nieprostokątnych:
RP2:
Trójkąt nie jest prostokątny (~TP=1) wtedy i tylko wtedy gdy nie zachodzi w nim suma kwadratów (~SK=1)
~TP<=>~SK = (B2: ~TP=>~SK)*(A4: ~SK=>~TP) =1*1 =1
Ta równoważność wymusza tożsamość zbiorów ~TP==~SK:
~TP==~SK = (B2: ~TP=>~SK)*(A4: ~SK=>~TP) =1*1 =1

Podsumowanie:
Udowodniliśmy następujące przypadki:
RP1: TP<=>SK wymusza tożsamość zbiorów TP==SK (i odwrotnie)
RP2: ~TP<=>~SK wymusza tożsamość zbiorów ~TP=~SK (i odwrotnie)

W równaniu logicznym możemy to zapisać tak:
RP1: TP<=>SK <=> TP==SK = RP2: ~TP<=>~SK <=> ~TP==~SK

Oczywistym jest, że znaku tożsamości logicznej „=” nie wolno tu zastąpić tożsamością matematyczną „==” bo wyjdzie nam bzdura jakoby zachodziła tożsamość w zbiorach:
TP==~TP
To jest oczywista, czysto matematyczna bzdura.

3.3.3 Definicja znaczka różne na mocy definicji ## w teorii zbiorów (pojęć)

Definicja tożsamości matematycznej „==”:
Dwa zbiory (pojęcia) p i q są matematycznie tożsame p==q wtedy i tylko wtedy są w relacji równoważności p<=>q i odwrotnie.
p==q <=> (A1: p=>q)*(B1: p~>q) = (A1: p=>q)*(B3: q=>p) = p<=>q =1
Inaczej:
p<=>q =0 - zbiory (pojęcia) p i q są różne na mocy definicji ## albo różne # w znaczeniu iż zbiór (pojęcie) p jest zaprzeczeniem q

Definicja znaczka różne na mocy definicji ##
Dwa zbiory (pojęcia) są różne ma mocy definicji ## wtedy i tylko wtedy gdy nie są w relacji równoważności <=> oraz zbiór (pojęcie) p nie jest zaprzeczeniem # pojęcia q.

Przykład:
Weźmy definicje warunku wystarczającego => i koniecznego ~>.
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Zbadajmy w rachunku zero-jedynkowym czy zachodzi tu relacja równoważności między znaczkami => i ~>.

Zero-jedynkowa definicja równoważności:
Kod:

   p  q p<=>q
A: 1  1   1
B: 1  0   0
C: 0  0   1
D: 0  1   0
   1  2   3

Sprawdzenie czy między warunkiem wystarczającym p=>q i koniecznym p~>q zachodzi relacja równoważności <=>
Kod:

   p  q p=>q p~>q (p=>q)<=>(p~>q)
A: 1  1  1    1          1
B: 1  0  0    1          0
C: 0  0  1    1          1
D: 0  1  1    0          0
   1  2  3    4          5

Brak samych jedynek w kolumnie wynikowej 5 jest dowodem formalnym, że między warunkiem wystarczającym => i koniecznym ~> nie zachodzi relacja równoważności <=>

To samo możemy udowodnić w równaniach logicznych.
Definicja równoważności:
p<=>q = (A1: p=>q)*(B3: q=>p) = (A1: p=>q)*(B1: p~>q)
bo prawo Tygryska:
B3: q=>p = B1: p~>q

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = ~p*~q + q*p
stąd:
p<=>q = p*q + ~p*~q
Nie otrzymaliśmy tu wynikowej jedynki co oznacza że warunek wystarczający A1: p=>q nie jest tożsamy z warunkiem koniecznym B1: p~>q.

Sprawdźmy czy otrzymamy tożsamość zbiorów (pojęć) dla tożsamości matematycznej p==q.
Dla p==q mamy:
p==q <=> p<=>p = p*p + ~p*~p = p+~p =1
cnd

Dokładnie to samo, najprościej:
(A1: p=>q = ~p+q) <=> (B1: p~>q=p+~q) =0 - równoważność fałszywa
Równoważność jest tu fałszywa bo prawe strony tożsamości logicznej (~p+q) i (p+~q) nie są identyczne, ani też jedna strona nie jest zaprzeczeniem drugiej strony.
Dlatego mamy tu znaczek różne na mocy definicji ##:
(A1: p=>q = ~p+q) ## (B1: p~>q = p+~q)

3.3.4 Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym

Kod:

T1
Definicja warunku wystarczającego =>
   p  q p=>q
A: 1  1  1
B: 1  0  0
C: 0  0  1
D: 0  1  1
   1  2  3

##
Kod:

T2
Definicja warunku koniecznego ~>
   p  q p~>q
A: 1  1  1
B: 1  0  1
C: 0  0  1
D: 0  1  0
   1  2  3

##
Kod:

T3
Definicja spójnika “lub”(+)
   p  q p+q
A: 1  1  1
B: 1  0  1
C: 0  0  0
D: 0  1  1
   1  2  3

Gdzie:
## - różne na mocy definicji
p=>q=~p+q ## p~>q=p+~q ## p+q

Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym:
Dwie kolumny są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

Doskonale to widać w kolumnach wynikowych tabel T1, T2 i T3. Warunek konieczny jaki musi tu być spełniony to identyczna matryca zero-jedynkowa po stronie wejść p i q bowiem wtedy i tylko wtedy możemy łatwo wnioskować o tożsamości lub braku tożsamości wynikowych kolumn zero-jedynkowych - tu kolumna 3. Warunek wspólnej matrycy zero-jedynkowej po stronie wejścia p i q w tabelach T1, T2 i T3 jest spełniony.

Uwaga:
Matematycznie wspomniany wyżej warunek konieczny nie musi być spełniony co udowodnił w początkach rozszyfrowywania algebry Kubusia Makaron Czterojajeczny, ale wtedy będziemy mieli horror w główkowaniu czy relacja tożsamości zachodzi, czy też nie zachodzi.

3.3.5 Definicja znaczka różne # w rachunku zero-jedynkowym

Potrzebne definicje spójników „lub”(+) i „i”(*).
Kod:

T1
Definicja spójnika “lub”(+)
   p  q p+q
A: 1  1  1
B: 1  0  1
C: 0  0  0
D: 0  1  1
   1  2  3

Kod:

T2
Definicja spójnika “i”(*)
   p  q p*q
A: 1  1  1
B: 1  0  0
C: 0  0  0
D: 0  1  0
   1  2  3


Rozważmy funkcję logiczną Y w logice dodatniej (bo Y):
1.
Y = p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1

Przejście do logiki ujemnej (bo ~Y) poprzez negację stronami:
~Y=~(p+q) = ~p*~q - na mocy prawa De Morgana
Stąd mamy:
2.
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=>~p=1 i ~q=1

Stąd mamy:
Definicja znaczka różne # w rachunku zero-jedynkowym:
Funkcja logiczna Y jest różna w znaczeniu znaczka # od funkcji po przeciwnej stronie wtedy i tylko wtedy gdy jedna strona znaczka # jest zaprzeczeniem drugiej strony

Nasz przykład:
Y=p+q # ~Y=~p*~q
Gdzie:
# - różne o definicji jak wyżej

Dokładnie to samo metodą na piechotę, czyli w rachunku zero-jedynkowym:
Kod:

   p  q Y=(p+q) ~Y=~(p+q) ~p ~q ~Y=~p*~q
A: 1  1  1        0        0  0   0
B: 1  0  1        0        0  1   0
C: 0  0  0        1        1  1   1
D: 0  1  1        0        1  0   0
   1  2  3        4        5  6   7

Doskonale widać, że kolumna 7 jest zaprzeczeniem kolumny 3.
3: Y=p+q # 7: ~Y=~p*~q

Doskonale tu widać znaczenie logiki jedynek:
1.
Tabela zero-jedynkowa ABCD123:
Y=p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
2.
Tabela zero-jedynkowa ABCD127:
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1
cnd

3.3.6 Definicja znaczka różne # w teorii zbiorów (pojęć)

Definicja dziedziny minimalnej:
Dziedzina minimalna to minimalny zbiór na którym operujemy.
Wszystko co jest poza dziedziną minimalną jest zbiorem pustym z definicji.

Rozważmy poniższe zbiory mające nazwy własne:
P=[pies]
A.
Dla dziedziny:
ZWZ - zbiór wszystkich zwierząt
Otrzymamy zbiór ~P:
~P=[ZWZ-P] - zbiór wszystkich zwierząt minus jeden element P=[pies]
B.
Dla dziedziny:
ZWS - zbiór wszystkich ssaków:
otrzymamy zbiór ~P:
~P=[ZWS-P] - zbiór wszystkich ssaków minus jeden element P=[pies]
C.
Dla dziedziny Uniwersum (zbiór wszelkich pojęć rozumianych przez człowieka) otrzymamy ~P:
~P=[U-P] - zbiór wszelkich pojęć rozumianych przez człowieka minus jeden element P=[pies]

Wnioski:
1.
Nie ma sensu mówienie o zaprzeczeniu zbioru ~p dopóki nie wybierzemy dziedziny w której ten zbiór zaprzeczamy.
2.
Dziedzina minimalna dla „psa” P=[pies] to zbiór wszystkich zwierząt ZWZ - przypadek A.

Przykład:
Kod:

------------------------------------------
| M - zbiór mężczyzn  | K - zbiór kobiet |
| M=~K                | K=~M             |
|                     |                  |
------------------------------------------
|         Dziedzina: C (człowiek)        |
|         Zbiór wszystkich ludzi         |
|                   C=M+K                |
------------------------------------------

Rozważmy dziedzinę minimalną dla człowieka (C):
C=[M, K]
C- zbiór człowiek, przyjęta dziedzina minimalna (= zbiór wszystkich ludzi)
Elementy zbioru:
M - mężczyzna
K - kobieta
Dziedzina:
C = człowiek
Matematycznie zachodzi tożsamość zbiorów:
C = M+K
Obliczenia przeczeń pojęć M i K tzn. ich uzupełnień do dziedziny D:
1.
~M=[C-M]=[M+K-M]=[K]=K
Zachodzi tożsamość zbiorów:
~M=K
Znaczenie:
Jeśli ze zbioru „człowiek” wylosujemy nie mężczyznę (~M=1) to na 100% => będzie to kobieta (K=1)
~M=>K =1
2.
~K=[C-K]=[M+K-K]=[M]=M
Zachodzi tożsamość zbiorów:
~K=M
Znaczenie:
Jeśli ze zbioru „człowiek” wylosujemy nie kobietę (~K=1) to na 100% => będzie to mężczyzna (M=1)
~K=>M =1

Zauważmy, że jeśli przyjmiemy dziedzinę szerszą niż dziedzinę minimalną p.
ZWS - zbiór wszystkich ssaków
To kluczowa tu tożsamość w zbiorach:
~M=K
przestanie obowiązywać, czyli leży i kwiczy, bowiem nie mężczyzną może być np. słoń
~M=S (słoń)

Kluczowy wniosek:
Jeśli mamy zbiór mężczyzn M to minimalną dziedziną jaką możemy tu przyjąć jest zbiór:
C- zbiór człowiek, przyjęta dziedzina (= zbiór wszystkich ludzi)
Zauważmy, że gdybyśmy dziedzinę zawęzili do zbioru M to pojęcie nie mężczyzna (~M) byłoby dla nas nierozpoznawalne.
Dowód:
M - mężczyzna
D=M - przyjęta dziedzina
~M=[D-M]=[M-M]=[]
cnd

Nawiązując do przykładu wyżej matematycznie zachodzi też:
M=~K # K=~M

Definicja znaczka różne # dla zbiorów (pojęć):
Dwa zbiory (pojęcia) są różne w znaczeniu znaczka # wtedy i tylko wtedy gdy dowolna strona znaczka # jest zaprzeczeniem drugiej strony.
Sprawdzamy:
M =~(K) = ~(~M) =M
cnd

3.3.7 Nadmierna precyzja

Moja maksyma sprzed 35 lat z czasów gdy pisałem podręczniki do nauki techniki mikroprocesorowej.

Twierdzenie głosu rozsądku:
Zginąć można zarówno w chaosie, jak i nadmiernej precyzyjności

Przykład:
W początkach techniki mikroprocesorowej stosowano super precyzyjną notację np. dla mikroprocesora i8080 było tak.

A - nazwa rejestru wewnątrz mikroprocesora
(A) - zawartość rejestru o nazwie A
HL - nazwa rejestru wewnątrz mikroprocesora
(HL) - zwartość rejestru o nazwie HL

(HL) - adres komórki pamięci zewnętrznej wskazywana przez zawartość (HL) rejestru o nazwie HL
((HL)) - zawartość komórki pamięci zewnętrznej o adresie w (HL)

Pobranie zawartości pamięci o adresie w (HL) do rejestru (A) zapisywane było w sposób super precyzyjny:
(A) := ((HL))
Czytamy:
Wpisz do rejestru o nazwie A zawartość komórki pamięci wskazywaną przez zawartość rejestru o nazwie HL.

Ta „super precyzyjna” notacja prowadziła do potwornych krzaków trudnych do ogarnięcia przez umysł ludzi normalnych tzn. programistów-praktyków.

Co zrobili programiści-praktycy?
Wykopali w kosmos „super precyzyjną” notacje jak wyżej opuszczając wszędzie po jednym nawiasie.

W zapisie praktyków (patrz katalogi mikroprocesorów) polecenie:
Wpisz do rejestru o nazwie A zawartość komórki pamięci wskazywaną przez zawartość rejestru o nazwie HL.

Zapisywane jest tak:
A := (HL)
Czytamy:
Wpisz do rejestru o nazwie A zawartość komórki pamięci wskazywaną przez zawartość rejestru o nazwie HL.

Po co to wszystko piszę?

W kilku punktach wyżej zacząłem uściślać definicje w algebrze Kubusia precyzyjnie odróżniając tożsamość matematyczną „==” od tożsamości logicznej „=”.
Matematycznie te definicje są różne, ale wprowadzenie dwóch różnych znaczków „==” i „=” komplikuje zapisy matematyczne tzn. trzeba uważać kiedy zapisać znaczek „==” a kiedy znaczek „=”
… no i jestem w kropce, co dalej robić?

Myślę że należy tu skorzystać z twierdzenia głosu rozsądku.

Twierdzenie głosu rozsądku:
Zginąć można zarówno w chaosie, jak i nadmiernej precyzyjności

Na mocy tego twierdzenia wywalamy znaczek „==” w kosmos, bowiem o tym czy mamy do czynienia z tożsamością matematyczną „==” czy też z tożsamością logiczną „=” decyduje zapis związany z językiem potocznym gdzie bez problemu rozróżnimy o jaką tożsamość chodzi - matematyczną „==” czy też logiczną „=”

Podsumowując:
Zdecydowanie wywalamy znaczek tożsamości matematycznej „==” w kosmos gdyż prowadzi on do komplikacji zapisów matematycznych.

Matematycy którzy tego faktu nie będą w stanie strawić mogą sobie napisać swoją algebrę Kubusia gdzie w zapisach matematycznych będą precyzyjnie odróżniać znaczek „==” od znaczka „=”. Nie mam nie przeciwko, ale osobiście jestem wrogiem nadmiernej precyzyjności.

Zauważmy, że w języku potocznym nawet w zapisach formalnych (nie związanych z językiem potocznym) jasne jest kiedy mówimy o tożsamości matematycznej „==” a kiedy o tożsamości logicznej „=”.

Przykład:
Dwa zbiory pojęcia są matematycznie tożsame „=” wtedy i tylko wtedy gdy znajdują się w relacji równoważności <=>:
p=q <=> (A1: p=>q)*(B3: q=>p) = (A1: p=>q)*(B1: p~>q) = p<=>q =1

Pierwszy znaczek tożsamości p=q to tożsamość matematyczna typu:
Równoważność Pitagorasa dla trójkątów prostokątnych:
TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = TP<=>SK
Twierdzenie proste Pitagorasa A1: TP=>SK oraz twierdzenie odwrotne Pitagorasa B3: SK=>TP udowodniono wieki temu co jest dowodem tożsamości zbiorów:
TP=SK
Zbiór trójkątów prostokątnych (TP=1) jest tożsamy ze zbiorem trójkątów w których spełniona jest suma kwadratów (SK=1)

Dalsze przykłady:
pies=pies
2=2
Zbiór P2=[2,4,6,8..] = zbiór P2=[2,4,6,8 ..]
etc

W prawach logiki matematycznej mamy do czynienia z tożsamością logiczną „=”:

Przykład:
Twierdzenie proste Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Twierdzenie proste Pitagorasa udowodniono wieki temu, stąd wartość logiczna tego zdania to 1.

Prawo kontrapozycji:
A1: TP=>SK = A4: ~SK=>~TP
stąd:
A4.
Jeśli w trójkącie nie zachodzi suma kwadratów (~SK=1) to na 100% => trójkąt ten nie jest prostokątny (~TP=1)
~SK=>~TP =1
Po udowodnieniu twierdzenia prostego Pitagorasa A1, co zrobiono wieki temu, nie musimy udowadniać twierdzenia A4, bowiem jego prawdziwość gwarantuje nam prawo logiki matematycznej, prawo kontrapozycji.

Stąd mamy wyprowadzoną definicję tożsamości logicznej „=”.
A1: TP=>SK = A4: ~SK=>~TP

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Salomonowe rozwiązanie:
Na mocy twierdzenia głosu rozsądku wywalamy w kosmos znaczek tożsamości matematycznej „==” domyślnie przyjmując że jeśli używamy pojęcia „tożsamość” to chodzi nam precyzyjnie o tożsamość „==” w rozumieniu matematyki klasycznej typu:
pies=pies
2=2
P2=[2,4,6,8 ..] = P2=[2,4,6,8..]
W przypadku gdy będziemy mieli do czynienia z tożsamością logiczną „=” powinniśmy to słownie zaznaczyć.
„powinniśmy” nie oznacza że „musimy”

Przykład:
Prawo Kubusia:
A1: p=>q = A2: ~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Zauważmy, że w tożsamości matematycznej np.
2=2
na mocy definicji spełniona jest również równoważność:
2<=>2
Dowód:
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Dowód:
dla p=q mamy:
2=2 <=> (A1: 2=>2)*(B1: 2~>2) =1*1 =1
Dowód:
A1: 2=>2 =1 - bo każdy zbiór (pojęcie) jest podzbiorem => siebie samego
B1: 2~>2 =1 - bo każdy zbiór (pojęcie) jest nadzbiorem ~> siebie samego
cnd

3.4 Definicje operatorów implikacyjnych

Definicja operatora implikacyjnego:
Operator implikacyjny to operator logiczny wyrażony zdaniami warunkowymi „Jeśli p to q”

Rozróżniamy cztery operatory implikacyjne:

I.
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => jest (=1) spełniony
B1: p~>q =0 - warunek konieczny ~> nie jest (=0) spełniony

Stąd mamy definicję implikacji prostej p|=>q w równaniu logicznym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1

Definicja implikacji prostej p|=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|=>q:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji prostej p|=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx

Definicja warunku wystarczającego =>:
p=>q = ~p+q
##
Definicja warunku koniecznego ~>:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy definicję implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q

###

II.
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - warunek wystarczający => nie jest (=0) spełniony
B1: p~>q =1 - warunek konieczny ~> jest (=1) spełniony

Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Definicja implikacji odwrotnej p|~>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji odwrotnej p|~>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax

Definicja warunku wystarczającego =>:
p=>q = ~p+q
##
Definicja warunku koniecznego ~>:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy definicję implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q

###

III.
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => jest (=1) spełniony
B1: p~>q =1 - warunek konieczny ~> jest (=1) spełniony

Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja równoważności p<=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p<=>q:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję równoważności p<=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii Ax i prawdziwość dowolnego zdania serii Bx

Definicja warunku wystarczającego =>:
p=>q = ~p+q
##
Definicja warunku koniecznego ~>:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy definicję równoważności p<=>q w spójnikach „i”(*) i „lub”(+):
p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q

###

IV.
Definicja operatora chaosu p|~~>q:

Operator chaosu p|~~>q to nie zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - warunek wystarczający => nie jest (=0) spełniony
B1: p~>q =0 - warunek konieczny ~> nie jest (=0) spełniony

Stąd mamy definicję operatora chaosu p|~~>q w równaniu logicznym:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) =1*1 =1

Definicja operatora chaosu p|~~>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|~~>q:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję operatora chaosu p|~~>q potrzeba ~> i wystarcza => udowodnić fałszywość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx

Definicja warunku wystarczającego =>:
p=>q = ~p+q
##
Definicja warunku koniecznego ~>:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy definicję operatora chaosu p|~~>q w spójnikach „i”(*) i „lub”(+):
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(~p+q)*~(p+~q) = (p*~q)*(~p*q) =0

Zauważmy, że pomiędzy zdefiniowanymi wyżej operatorami implikacyjnymi zachodzi matematyczna relacja różne na mocy definicji operatorowych ###:
p|=>q = ~p*q ### p|~>q = p*~q ### p<=>q =p*q+~p*~q ### p|~~>q =0
Gdzie:
### - różne na mocy definicji operatorowych

Znaczenie relacji różne na mocy definicji operatorowych ###:
Relacja różne na mocy definicji operatorowych ### oznacza, że p i q w dowolnej definicji operatorowej nie jest tożsame z p i q w dowolnej innej definicji operatorowej.
Dowód w następnym punkcie.


3.5 Zapis formalny i aktualny w logice matematycznej

Definicja zmiennej formalnej:
Zmienna formalna to zwyczajowa zmienna binarna nie mająca związku ze zmienną aktualną.
Zwyczajowo w logice matematycznej zmienne formalne oznaczane są symbolami Y, p, q, r ..

Definicja zmiennej aktualnej:
Zmienna aktualna to zmienna mająca ścisły związek z językiem potocznym człowieka
Przykłady:
P = pies
~P - nie pies
TP - trójkąt prostokątny (zmienna w logice dodatniej bo TP)
~TP - trójkąt nieprostokątny (zmienna w logice ujemnej bo ~TP)
ZWT - zbiór wszystkich trójkątów (dziedzina dla trójkątów)
etc
Definicja dziedziny:
TP+~TP = ZWT =1 - zbiór ~TP jest uzupełnieniem do wspólnej dziedziny ZWT dla zbioru TP
TP*~TP =0 - zbiory TP i ~TP są rozłączne

To samo w zapisach formalnych dla punktu odniesienia:
p=TP (zbiór trójkątów prostokątnych
D = ZWT (wspólna dziedzina)
Formalna definicja dziedziny:
p+~p =D =1
p*~p=0
Stąd mamy:
~p=[D-p)

Definicja zapisu formalnego:
Zapis formalny w logice matematycznej to zapis praw logiki matematycznej z użyciem zmiennych formalnych (zwyczajowo Y, p, q, r ..) nie związany bezpośrednio z językiem potocznym człowieka.

Definicja zapisu aktualnego:
Zapis aktualny w logice matematycznej to operowanie symbolami mającymi ścisły związek ze zdaniami w języku potocznym.
Wszelkie prawa logiki matematycznej stosujemy tu bezpośrednio w zapisach aktualnych.

Przykład:
Twierdzenie proste Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Twierdzenie proste Pitagorasa udowodniono wieki temu, stąd wartość logiczna tego zdania to 1.

Prawo kontrapozycji:
A1: TP=>SK = A4: ~SK=>~TP

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

stąd:
A4.
Jeśli w trójkącie nie zachodzi suma kwadratów to na 100% => trójkąt ten nie jest prostokątny
~SK=>~TP =1
Po udowodnieniu twierdzenia prostego Pitagorasa A1, co ludzkość zrobiła wieki temu, nie musimy udowadniać twierdzenia A4, bowiem jego prawdziwość gwarantuje nam prawo logiki matematycznej, prawo kontrapozycji.


3.6 Punkt odniesienia w logice matematycznej, prawo Kameleona

Punkt odniesienia w logice matematycznej:
Dla dowolnego zdania warunkowego „Jeśli … to …” w zapisie aktualnym punkt odniesienia ustalamy wtedy i tylko wtedy gdy zamierzamy rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie wypowiedziane.
Wtedy dla zdania warunkowego „Jeśli … to …” w zapisie aktualnym przyjęty punkt odniesienia to:
Parametr aktualny z wypowiedzianego zdania po „Jeśli …” = parametr formalny p (poprzednik)
Parametr aktualny z wypowiedzianego zdania po „to …”= parametr formalny q (następnik)

Przykład:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
To samo w zapisach formalnych to:
TP=p
SK=q
Stąd:
p=>q =1

Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik

Przykład 1.
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
Zawsze gdy pada, są chmury.
Dla punktu odniesienia ustawionego na zdaniu A1 mamy:
p=P (pada)
q=CH (chmury)
Stąd:
P=>CH =1 - zapis aktualny
p=>q =1 - zapis formalny

Aby rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie A1 musimy udowodnić prawdziwość/fałszywość warunku koniecznego ~> B1 między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli jutro będzie padało (P=1) to może ~> być pochmurno (CH=1)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur bo może nie padać (~P=1) a mimo to chmury mogą istnieć (CH=1)
Oczywistość dla każdego ośmiolatka.
Dla B1 możemy tu skorzystać z prawa Tygryska gdzie będzie to jaśniej widoczne.
Prawo Tygryska w zapisach aktualnych:
B1: P~>CH = B3: CH=>P
Prawo Tygryska w zapisach formalnych:
B1: p~>q = B3: q=>p

Definicja tożsamości logicznej „=”:
Prawdziwość zdania po dowolnej stronie tożsamości logicznej „=” wymusza prawdziwość zdania po drugiej stronie
Prawdziwość zdania po dowolnej stronie tożsamości logicznej „=” wymusza prawdziwość zdania po drugiej stronie

Stąd mamy:
B3.
Jeśli jutro będzie pochmurno (CH=1) to na 100% => będzie padało (P=1)
CH=>P =0
q=>p =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania bo nie zawsze gdy są chmury, pada
Oczywistość dla każdego 5-cio latka
Fałszywość warunku wystarczającego => B3 na mocy prawa Tygryska wymusza fałszywość warunku koniecznego ~> B1.

Stąd wnioskujemy, iż mamy tu do czynienia z implikacją prostą P|=>CH:
Implikacja prosta P|=>CH to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - definicja warunku wystarczającego => jest (=1) spełniona
B1: P~>CH =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Zapis aktualny:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0) =1*1 =1
Zapis formalny:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1 =1

Podstawmy zdania A1 i B1 w zapisach aktualnych do matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q:
Kod:

IP: P|=>CH
Związki warunku wystarczającego => i koniecznego ~> w p|=>q:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p =1
A: 1: P=>CH = 2:~P~>~CH [=] 3: CH~>P = 4:~CH=>~P=1
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p =0
B: 1: P~>CH = 2:~P=>~CH [=] 3: CH=>P = 4:~CH~>~P=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Zauważmy, że nie ma tu błędu podstawienia bo wszędzie mamy:
p=P (pada)
q=CH (chmury)


Przykład 2.
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P
Dla punktu odniesienia ustawionego na zdaniu B1 mamy:
p=CH (chmury)
q=P (pada)
Stąd:
CH~>P =1 - zapis aktualny
p~>q =1 - zapis formalny

Aby rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie B1 musimy udowodnić prawdziwość/fałszywość warunku wystarczającego A1 między tymi samymi punktami i w tym samym kierunku.
A1.
Jeśli jutro będzie pochmurno (CH=1) to na 100% => będzie padać (P=1)
CH=>P =1
Chmury nie są warunkiem wystarczającym => dla padania bo nie zawsze gdy są chmury, pada.
Wie o tym każdy 5-cio latek

Stąd wnioskujemy, iż mamy tu do czynienia z implikacją odwrotną CH|~>P:
Implikacja odwrotna CH|~>P to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =0 - definicja warunku wystarczającego => nie jest (=0) spełniona
B1: P~>CH =1 - definicja warunku koniecznego ~> jest (=1) spełniona

Zapis aktualny:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) = ~(0)*1 =1*1 =1
Zapis formalny:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 =1*1 =1

Podstawmy zdania A1 i B1 w zapisach aktualnych do matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji odwrotnej p|~>q:
Kod:

IO: CH|~>P
Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p =0
A: 1: CH=>P = 2:~CH~>~P [=] 3: P~>CH = 4:~P=>~CH=0
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p =1
B: 1: CH~>P = 2:~CH=>~P [=] 3: P=>CH = 4:~P~>~CH=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Zauważmy, że nie ma tu błędu podstawienia bo wszędzie mamy:
p=CH (chmury)
q=P (pada)


Porównajmy tabele prawdy z przykładu 1 i 2.

Przykład 1.
Zapis aktualny:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0) =1*1 =1
Zapis formalny:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1 =1

Podstawmy zdania A1 i B1 w zapisach aktualnych do matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q:
Kod:

IP: P|=>CH
Związki warunku wystarczającego => i koniecznego ~> w p|=>q:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p =1
A: 1: P=>CH = 2:~P~>~CH [=] 3: CH~>P = 4:~CH=>~P=1
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p =0
B: 1: P~>CH = 2:~P=>~CH [=] 3: CH=>P = 4:~CH~>~P=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Zauważmy, że nie ma tu błędu podstawienia bo wszędzie mamy:
p=P (pada)
q=CH (chmury)


###

Przykład 2.
Zapis aktualny:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) = ~(0)*1 =1*1 =1
Zapis formalny:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 =1*1 =1

Podstawmy zdania A1 i B1 w zapisach aktualnych do matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji odwrotnej p|~>q:
Kod:

IO: CH|~>P
Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p =0
A: 1: CH=>P = 2:~CH~>~P [=] 3: P~>CH = 4:~P=>~CH=0
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p =1
B: 1: CH~>P = 2:~CH=>~P [=] 3: P=>CH = 4:~P~>~CH=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Zauważmy, że nie ma tu błędu podstawienia bo wszędzie mamy:
p=CH (chmury)
q=P (pada)

Gdzie:
### - różne na mocy definicji operatorowych

Zauważmy, że p i q z implikacji prostej IP: P|=>CH = p|=>q nie jest tożsame z p i q z implikacji odwrotnej IO: CH|~>P = p|~>q bo mamy tu szkolny błąd podstawienia:
W implikacji prostej IP: P|=>CH mamy:
p=P (pada)
q=CH (chmury)
natomiast w implikacji odwrotnej IO: CH|~>P mamy:
p=CH (chmury)
q=P (pada)

Stąd mamy:

Znaczenie relacji różne na mocy definicji operatorowych ###:
Relacja różne na mocy definicji operatorowych ### oznacza, że p i q w dowolnej definicji operatorowej nie jest tożsame z p i q w dowolnej innej definicji operatorowej.

Przykład 1
Wypowiedzmy raz jeszcze zdanie A1 z implikacji prostej IP: P|=>CH:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
Zawsze gdy pada, są chmury.
To samo w zapisie formalnym:
p=>q =1
Gdzie:
p=P (pada)
q=CH (chmury)

###

Przykład 2
Wypowiedzmy raz jeszcze zdanie B1 z implikacji odwrotnej IO: CH|~>P:
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego by padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P
To samo w zapisie formalnym:
B1: p~>q = B2: ~p=>~q
Gdzie:
p = CH (chmury)
q = P (pada)

Zastosujmy do zdania B1 prawo Tygryska:
B1: CH~>P = B3: P=>CH
to samo w zapisie formalnym:
B1: p~>q = B3: q=>p
Wypowiedzmy zdanie B3:
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury.
To samo w zapisie formalnym:
q=>p =1
Gdzie:
p=CH (chmury)
q=P (pada)

Gdzie dla przykładu 1 i 2 mamy:
### - różne na mocy definicji operatorowych

Podsumowanie:
Doskonale widać, że zdanie A1 z przykładu 1 jest identyczne z dokładnością do każdej literki i każdego przecinka ze zdaniem B3 z przykładu 2, a mimo to są to zdania różne na mocy definicji operatorowych ### bo mamy tu szkolny błąd podstawienia.

Zobaczmy to jeszcze raz:

Przykład 1
A1: P=>CH =1
A1: p=>q =1
p=P (pada)
q=CH (chmury)

###

Przykład 2
B3: P=>CH =1
B3: q=>p =1
p=CH (chmury)
q=P (pada)

Gdzie:
### - różne na mocy definicji operatorowych

Błąd podstawienia widać tu jak na dłoni.
cnd

Stąd mamy:

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.


3.7 Prawdziwość/fałszywość zdań warunkowych przy znanej wartości logicznej p i q

W algebrze Kubusia zbiory mają wartości logiczne:
[x] =1 - zbiór niepusty, zawierający co najmniej jeden element, ma wartość logiczną 1
[] =1 - zbiór pusty, nie zawierający żadnego elementu, ma wartość logiczną 0

Rozważmy problem rodem z teorii logiki matematycznej.

Zbadaj prawdziwość/fałszywość poniższego zdania:
A.
Jeśli 2+2=4 to na 100% => 2*2=4
4=>4 =1
p=1, q=1
1=>1 =1
Definicja warunku wystarczającego => spełniona bo każdy zbiór jest podzbiorem => siebie samego
Zbiór jednoelementowy p=[4] jest podzbiorem => zbioru jednoelementowego q=[4]

Komentarz:
Użyte w zdaniu A1 znaczki sumy algebraicznej (+) i iloczynu algebraicznego (*) są dla logiki matematycznej kompletnie bez znaczenia, bowiem logika matematyczna z definicji nie zajmuje się jakimkolwiek algebraicznym liczeniem elementów w zbiorze bo jak to zrobić przy pomocy spójników „lub”(+) oraz „i”(*) z naturalnego języka potocznego?
Oczywiście to jest niewykonalne, czyli nie da się.

Uwaga!
Użyte w zdaniu A1 znaczki dodawania algebraicznego (+) i mnożenia algebraicznego (*) mają zero wspólnego z logiką matematyczną gdzie znaczki „lub”(+) oraz „i”(*) znaczą zupełnie co innego:
p+q - suma logiczna (+) zbiorów p i q
p*q = iloczyn logiczny (*) zbiorów p i q

Rozpatrzmy przypadek gdzie poprzednik i następnik jest twardą prawdą, ale nie są to zbiory tożsame.

A1
Jeśli 2+2=4 to 2*3=6
4=> 6 =0
Wartości logiczne p i q:
p=1, q=1
1=>1 =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór jednoelementowy p=[4] nie jest podzbiorem zbioru jednoelementowego q=[6]

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem samego siebie.
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

To jest wyjątek identyczny jak w matematyce klasycznej:
Pamiętaj cholero nie dziel przez 0.


Trzy pozostałe przypadki mutacji zdań gdzie wartość logiczna poprzednika i następnika jest znana z góry to:

B.
Jeśli 2+2=4 to 2+2=5
(2+2=4) => (2+2=5) =0
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=4 to może ~~> się zdarzyć, że 2+2=5
224~~>225 = 224*225 = 1*[] =1*0 =0
1~~>0 =1*0 =0
Gdzie:
[] - zbiór pusty
stąd na mocy prawa Kobry zdanie B jest fałszem
B: (2+2=4)=>(2+2=5) =0
cnd

Zamieńmy teraz miejscami poprzednik z następnikiem:
C.
Jeśli 2+2=5 to 2+2=4
(2+2=5)=>(2+2=4) =0
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=5 to może ~~> się zdarzyć, że 2+2=4
225~~>224 = 225*224 =[]*1 = 0*1 =0
0~~>1 = 0*1 =0
Stąd na mocy prawa Kobry zdanie C jest fałszem
(2+2=5)=>(2+2=4) =0
cnd

Weźmy ostatni możliwy przypadek:
D.
Jeśli 2+2=5 to 2+2=6
(2+2=5) => (2+2=6) =1
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=5 to może ~~> się zdarzyć, że 2+2=6
225~~>226 = 225*226 = []*[] =0
ALE!
0=>0 =1
Dlaczego mamy tu wynikową jedynkę a nie zero?
Odpowiedź:
Każdy zbiór jest podzbiorem => siebie samego na mocy definicji podzbioru.
Zbiór pusty [] również jest podzbiorem => siebie samego, czyli podzbiorem zbioru pustego []
Stąd:
[]=>[] =1
0=>0 =1

Na mocy powyższego otrzymujemy tabelę zero-jedynkową równoważności:
Kod:

   p   q     p<=>q
A: 1=> 1      =1
B: 1~~>0 =1*0 =0
C: 0~~>1 =0*1 =0
D: 0=> 0      =1


Teoria 5-cio latków.
Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona, zbiór p jest podzbiorem => zbioru q.
inaczej:
p=>q =0 - gdy relacja podzbioru => nie jest (=0) spełniona, zbiór p nie jest podzbiorem => zbioru q
Zachodzi matematyczna tożsamość pojęć:
Definicja podzbioru => = spełniona relacja podzbioru =>

Definicja podzbioru => w rachunku zero-jedynkowym:
p=>q = ~p+q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>

Dowód iż definicja podzbioru z algebry Kubusia jest identyczna jak w teorii zbiorów ziemian:
[link widoczny dla zalogowanych]
sjp napisał:

podzbiór - część danego zbioru

Wniosek:
Matematycznie istotą definicji podzbioru jest spełniona relacja podzbioru =>.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 8:02, 25 Paź 2020    Temat postu:

Prawo papużek nierozłączek można zapisać dużo prościej!
6.0 Równoważność <=>



Spis treści
6.0 Równoważność p<=>q 1
6.1 Najważniejsze definicje równoważności p<=>q 2
6.1.1 Podstawowa definicja równoważności p<=>q 2
6.1.2 Matematyczna definicja równoważności p<=>q 3
6.1.3 Definicja równoważności p<=>q w zbiorach 5
6.1.4 Aksjomatyczna definicja równoważności p<=>q 6
6.2 Operatory równoważności p|<=>q i q|<=>p 13
6.2.1 Operator równoważności p|<=>q 14
6.2.2 Operator równoważności q|<=>p 15
6.3 Prawo papużek nierozłączek 16
6.3.1 Związek równoważności p<=>q i „albo”($) w spójnikach „i”(*) i „lub”(+) 19
6.3.2 Związek „albo”($) i równoważności p<=>q w spójnikach „i”(*) i „lub”(+) 21
6.4 Równoważność p<=>q i spójnik „albo”($) w rachunku zero-jedynkowym 24
6.4.1 Związki równoważności <=> i spójnika „albo”($) w rachunku zero-jedynkowym 24
6.4.2 Związki spójnika „albo”($) i równoważności <=> w rachunku zero-jedynkowym 26



6.0 Równoważność p<=>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator logiczny wyrażony zdaniami warunkowymi „Jeśli p to q”

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> nie spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i prawdziwość dowolnego zdania serii Bx

W zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>


6.1 Najważniejsze definicje równoważności p<=>q

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Trzy najważniejsze definicje równoważności w logice matematycznej to:
1.
Podstawowa definicja równoważności:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
2.
Matematyczna definicja równoważności:
p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1
3.
Aksjomatyczna definicja równoważności, generująca tabelę zero-jedynkową równoważności.
p<=>q = (A1: p=>q)*(B2: ~p=>~q)

6.1.1 Podstawowa definicja równoważności p<=>q

Podstawowa definicja równoważności p<=>q:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd mamy równoważność wyrażoną spójnikami „i”(*) i „lub”(+):
p<=>q = (p=>q)*(p~>q) = (~p+q)*(p+~q)=~p*p + ~p*~q + q*p + q*~q
p<=>q = p*q+~p*~q

Zauważmy, że argumenty w równoważności są przemienne:
p<=>q = p*q+~p*~q [=] q<=>p = q*p + ~q*~p
bowiem iloczyn logiczny „i”(*) jest przemienny

W logice matematycznej zachodzą tożsamości nazw:
p=>q - warunek wystarczający => zwany także dostatecznym =>
p~>q - warunek konieczny ~> zwany także warunkiem potrzebnym ~>

W praktyce języka potocznego najczęściej korzystamy z podstawowej definicji równoważności.
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 9 910
„konieczny i wystarczający”
wyników: 8 700
„koniecznym i wystarczającym”
Wyników: 8 140
„potrzeba i wystarczy”
Wyników: 5 380
„koniecznym i dostatecznym”
Wyników: 2 160

Przykład 1.
Równoważność Pitagorasa dla trójkątów prostokątnych:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
Równoważność tożsama:
Do tego aby w trójkącie zachodziła suma kwadratów (SK) potrzeba ~> i wystarcza => aby ten trójkąt był prostokątny (TP)
Kolejna równoważność tożsama:
Bycie trójkątem prostokątnym (TP) jest warunkiem koniecznym ~> i wystarczającym => aby zachodziła w nim suma kwadratów (SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1=1

Przykład 2.
[link widoczny dla zalogowanych]
matemaks napisał:

Podzielność liczby całkowitej przez 2 i przez 3 jest warunkiem koniecznym ~> i wystarczającym => podzielności tej liczby przez 6.
P2*P3<=>P6 = (B1: P2*P3~>P6)*(A1: P2*P3=>P6)=1*1=1

Powyższą równoważność matematycy udowodnili (nie ważne jak) zatem musi zachodzić tożsamość zbiorów:
P2*P3=P6
Niestety, ziemscy matematycy nie mają bladego pojęcia, że w dowolna równoważność prawdziwa w zbiorach definiuje tożsamość zbiorów. Uznanie tego oczywistego faktu natychmiast posyła Klasyczny Rachunek Zdań tam gdzie jego miejsce - do piekła, na wieczne piekielne męki.

6.1.2 Matematyczna definicja równoważności p<=>q

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Matematyczna definicja równoważności p<=>q:
Równoważność to warunek wystarczający => zachodzący w dwie strony:
A1: p=>q =1 - twierdzenie proste prawdziwe
##
B3: q=>p =1 - twierdzenie odwrotne prawdziwe
Gdzie:
## - różne na mocy definicji
Stąd mamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1
W matematyce najczęściej korzystamy z matematycznej definicji równoważności co nie oznacza, że nie wolno nam skorzystać z dowolnej z 16 tożsamych definicji równoważności.

Przykład:
Równoważność Pitagorasa dla trójkątów prostokątnych:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP)=1*1 =1
Twierdzenie proste Pitagorasa TP=>SK i twierdzenie odwrotne Pitagorasa SK=>TP zostały udowodnione wieki temu, stąd ta równoważność jest prawdziwa

Definicja warunku wystarczającego =>:
p=>q = ~p+q
stąd mamy równoważność wyrażoną spójnikami „i”(*) i „lub”(+):
p<=>q = (p=>q)*(q=>p) = (~p+q)*(~q+p) = ~p*~q + ~p*p + q*~q + q*p
p<=>q = p*q+~p*~q
Zauważmy, że równoważność p<=>q definiuje de facto tożsamość zbiorów p=q.

Matematycznie w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja tożsamości zbiorów p=q w warunkach wystarczających =>:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q i zbiór q jest podzbiorem => p
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q =1
Powyższa relacja jest prawdziwa bo każdy zbiór jest podzbiorem => siebie samego.

Sprawdzenie czy dla zbiorów tożsamych p=q równoważność p<=>q jest prawdziwa.
Definicja podzbioru:
p=>q = ~p+q
Stąd dla p=q mamy:
p=p <=> (A1: p=>p)*(B3: p=>p) = (~p+p)*(~p+p) =1*1 =1
cnd

6.1.3 Definicja równoważności p<=>q w zbiorach

Definicja równoważności p<=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q (p=q)
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Zauważmy, że wyłącznie dla zbiorów tożsamych p=q zachodzi jednocześnie warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku.
Dowód:
[link widoczny dla zalogowanych]
Definicja podzbioru =>:
Podzbiór to dowolna część danego zbioru
p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0

[link widoczny dla zalogowanych]
Definicja nadzbioru ~>:
Nadzbiór - dla danego zbioru każdy zbiór zawierający ten zbiór
p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0

Na mocy definicji podzbioru => i nadzbioru ~> mamy:
Każdy zbiór jest podzbiorem => siebie samego
Każdy zbiór jest nadzbiorem ~> siebie samego

W algebrze Kubusia zachodzą tożsamości pojęć dla zbiorów:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Uzasadnienie:
Matematycznie istotą podzbioru => i nadzbioru ~> są zachodzące tu relacje podzbioru => i nadzbioru ~>

Istotne zastrzeżenie:
W równoważności p<=>q dziedzina musi być szersza od sumy logicznej zbiorów p+q co jest warunkiem koniecznym i wystarczającym rozpoznawalności wszystkich pojęć p, q, ~p i ~q.

Przykład:
Równoważność Pitagorasa dla trójkątów prostokątnych:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
Równoważność tożsama:
Do tego aby w trójkącie zachodziła suma kwadratów (SK) potrzeba ~> i wystarcza => aby ten trójkąt był prostokątny (TP)
Równoważność tożsama:
Bycie trójkątem prostokątnym jest warunkiem koniecznym ~> i wystarczającym => aby zachodziła w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1=1

Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK
Dziedziną minimalną jest tu:
D=ZWT - zbiór wszystkich trójkątów
Stąd dla TP=SK mamy:
Dziedzina ZWT=TP+~TP jest szersza do sumy zbiorów TP+SK = TP dzięki czemu rozpoznawalne są wszystkie zmienne TP, SK, ~TP, ~SK
~TP=[ZWT-TP]
~SK=[ZWT-SK]

Zauważmy, że gdybyśmy za dziedzinę przyjęli:
D=TP - zbiór trójkątów prostokątnych
To pojęcie ~TP byłoby nierozpoznawalne.
Dowód:
~TP=[D-TP]=[TP-TP] =[] =0
cnd

6.1.4 Aksjomatyczna definicja równoważności p<=>q

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> nie spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i prawdziwość dowolnego zdania serii Bx

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji równoważności p<=>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q:
       AB12:                      |     AB34:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                 
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0 =
      p<=>q     =  ~p<=>~q       [=]    q<=>p    =   ~q<=>~p
      =A1*B1       =A2*B2        [=]    =A3*B3       =A4*B4
        /\           /\                   /\           /\
        ||           ||                   ||           ||
        \/           \/                   \/           \/
        p=q     #   ~p=~q         #       q=p    #    ~q=~p
        I            II                   III          IV
Gdzie:
## - różne na mocy definicji
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.

Stąd:
Definicje podstawowe równoważności p<=>q wymuszające tożsamości zbiorów p=q w tabeli T2 to:
I.
RA1:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
p<=>q = wymusza tożsamość zbiorów p=q (i odwrotnie)
p=q
II.
RB2:
~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q) =1*1 =1
~p<=>~q = wymusza tożsamość zbiorów ~p=~q (i odwrotnie)
~p=~q
III.
RB3:
q<=>p = (A3: q~>p)*(B3: q=>p) =1*1 =1
q<=>p = wymusza tożsamość zbiorów q=p (i odwrotnie)
q=p
IV.
RA4:
~q<=>~p = (A4: ~q=>~p)*(B4: ~q~>~P) = 1*1 =1
~q<=>~p = wymusza tożsamość zbiorów ~q=~p (i odwrotnie)
~q=~p

Aksjomatyczną definicję równoważności p<=>q z wykorzystaniem warunku wystarczającego => mamy w obszarze AB12. Musimy tu skompletować serię czterech zdań warunkowych „Jeśli p to q” zawierającą wszystkie możliwe przeczenia p i q.
Jednoznaczne matematyczne rozwiązanie mamy w postaci poniższej definicji.

Aksjomatyczna definicja równoważności:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B2: ~p=>~q) =1*1 =1
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Stąd mamy równoważność wyrażoną spójnikami „i”(*) i „lub”(+):
p<=>q = (p=>q)*(~p=>~q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q
p<=>q = p*q+~p*~q

Każda równoważność definiuje tożsamość zbiorów/pojęć:
p=q
Podstawmy:
q:=p - pod zmienną binarną q podstaw zmienną p
stąd mamy:
p<=>p = p*p + ~p*~p = p+~p =1
Jak widzimy tożsamość zbiorów wymusza równoważność prawdziwą (i odwrotnie)

Definicja operatora implikacyjnego:
Operator implikacyjny to seria czterech zdań warunkowych „Jeśli p to q” uwzględniająca wszystkie możliwe przeczenia p i q

Operator równoważności p|<=>q to odpowiedź w spójnikach równoważności p<=>q na dwa pytania 1 i 2:
1.
Kiedy zajdzie p?

Na mocy tabeli symbolicznej T2: AB12 mamy:
RA1:
p zajdzie wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B2: ~p=>~q)
stąd mamy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem.
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q =p*~q =0
W zbiorach:
Nie istnieje (=0) wspólny element zbiorów p i ~q
W zdarzeniach:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń p i ~q

2.
Kiedy zajdzie ~p?

Na mocy tabeli symbolicznej T2: AB12 mamy:
RB2:
~p (~p=1) zajdzie wtedy i tylko wtedy gdy zajdzie ~q (~q=1)
~p<=>~q = (B2: ~p=>~q)*(A1: p=>q)
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
W zbiorach:
Nie istnieje (=0) wspólny element zbioru ~p i q
W zdarzeniach:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~p i q

Cecha charakterystyczna równoważności:
Równoważność p<=>q to jedyny spójnik logiczny gdzie mamy gwarancję matematyczną => (warunek wystarczający =>) zarówno po stronie p, jak i po stronie ~p.

Zakodujmy powyższą analizę zero-jedynkowo z punktem odniesienia ustawionym na równoważności:
RA1: p<=>q

Prawa Prosiaczka:
(p=1)=(~p=0)
(~p=1)=(p=0)

Prawa Prosiaczka możemy stosować wybiórczo do dowolnych zmiennych binarnych.
Dla wygenerowania zero-jedynkowej definicji równoważności p<=>q jest potrzebne i wystarczające jedno z praw Prosiaczka pozwalające na eliminację przeczeń w zapisach symbolicznych, bowiem w punkcie odniesienie RA1: p<=>q mamy sygnały p i q bez przeczeń.

Potrzebne nam prawo Prosiaczka to:
(~p=1)=(p=0)
(~q=1)=(q=0)

Zakodujmy nasza tabelę T2: AB12 zero-jedynkowo:
Kod:

T3.
Definicja      |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna    |Jedynek oznacza   |RA1: p<=>q        |
RA1: p<=>q     |                  |                  | p   q  p<=>q
A1:  p=> q =1  |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1<=>1   =1
A1’: p~~>~q=0  |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1<=>0   =0
RB2:~p<=>~q    |                  |                  |
B2: ~p=>~q =1  |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0<=>0   =1
B2’:~p~~>q =0  |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0<=>1   =0
  a    b  c       d        e    f    g        h    i   1   2    3
                                  | Prawa Prosiaczka |
                                  | (~p=1)=(p=0)     |
                                  | (~q=1)=(q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności p<=>q w logice dodatniej (bo q), zwanego krótko równoważnością p<=>q

Zakodujmy zero-jedynkowo tabelę T2: AB12 z punktem odniesienia ustawionym na równoważności:
RB2: ~p<=>~q
Prawo Kubusia z którego tu należy skorzystać to:
(p=1)=(~p=0)
(q=1)=(~q=0)
Uzasadnienie:
Wszystkie zmienne musimy sprowadzić do postaci zanegowanej ~p i ~q bowiem w punkcie odniesienia:
RB2: ~p<=>~q
obie zmienne mamy zanegowane.
Kod:

T4.
Definicja     |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna   |Jedynek oznacza   |RB2: ~p<=>~q      |
RA1: p<=>q    |                  |                  |~p  ~q ~p<=>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0<=>0   =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0<=>1   =0
RB2:~p<=>~q   |                  |                  |
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1<=>1   =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1<=>0   =0
  a    b  c      d        e    f    g        h    i   1   2    3
                                 | Prawa Prosiaczka |
                                 | (p=1)=(~p=0)     |
                                 | (q=1)=(~q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności ~p<=>~q w logice ujemnej (bo ~q), zwanego krótko równoważnością <=>

Zauważmy, że w tabelach T3 i T4 wejściowa definicja symboliczna równoważności abc jest identyczna, stąd tożsamość kolumn wynikowych 3 w tabelach zero-jedynkowych 123 jest dowodem formalnym poprawności prawa rachunku zero-jedynkowego:
T3: p<=>q = T4: ~p<=>~q

Dowód powyższego prawa bezpośrednio w rachunku zero-jedynkowym jest następujący:
Kod:

Definicja równoważności p<=>q
     p   q p<=>q
A1:  1<=>1  =1
A1’: 1<=>0  =0
B2:  0<=>0  =1
B2’: 0<=>1  =0

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Dowód:
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1
A1’: 1<=>0  =0     0<=>1   =0
B2:  0<=>0  =1     1<=>1   =1
B2’: 0<=>1  =0     0<=>1   =0
     1   2   3     4   5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Definicja dowolnego prawa logicznego definiowanego tożsamością logiczną „=”:
p<=>q = ~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony
Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q  p<=>q <=> ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1            1
A1’: 1<=>0  =0     0<=>1   =0            1
B2:  0<=>0  =1     1<=>1   =1            1
B2’: 0<=>1  =0     0<=>1   =0            1
     1   2   3     4   5    6            7

Same jedynki w kolumnie wynikowej 7 również są dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Nasze prawo rachunku zero-jedynkowego:
p<=>q <=> ~p<=>~q
można też udowodnić korzystając z definicji równoważności p<=>q w spójnikach warunku wystarczającego => i koniecznego ~>.

Oto przykładowy dowód:

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> nie spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q

Stąd mamy:
RA1: p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) =~p*p+~p*~q+q*p+q*~q = p*q+~p*~q
Dla ~p<=>~q mamy:
RB2: ~p<=>~q = (A2:~p~>~q)*(B2:~p=>~q) = (~p+q)*(p+~q) = p*q+~p*~q

Prawe strony RA1 i RB2 są tożsame, stąd mamy:
RA1: p<=>q = RB1: ~p<=>~q
cnd

Podsumowanie:
Równoważność to jedyny sensowny spójnik logiczny w świecie techniki, tylko i wyłącznie dzięki niemu działają wszelkie urządzenia techniczne od lodówki poczynając na komputerach i promie kosmicznym kończąc.
Dlaczego?

Równoważność p<=>q w świecie techniki:
Przykład:
Równoważność p<=>q zaimplementowana w elektronicznym sterowaniu kierownicy w samochodzie będzie działać tak:
a)
Jeśli skręcamy kierownicą w prawo to samochód zawsze skręci w prawo
P<=>P
b)
Jeśli skręcamy kierownicą w lewo to samochód zawsze skręci w lewo
L<=>L
L=~P
Stąd:
~P<=>~P
Nie ma tu miejsca na wybryki komputera sterującego kierownicą w postaci „rzucania monetą” jak w implikacji czy operatorze chaosu które podaję niżej.
Wniosek:
Równoważność to jedyny sensowny operator logiczny w świecie techniki.

Natomiast:
W operatorach implikacji prostej p|=>q, odwrotnej p|~>q (które już poznaliśmy) oraz w operatorze chaosu p|~~>q (poznamy za chwilę) mamy do czynienia z najzwyklejszym „rzucaniem monetą” w sensie „na dwoje babka wróżyła” które wyklucza zastosowanie tych operatorów w świecie techniki.

Implikacja w świecie techniki:
Przykład:
Implikacja p|=>q zaimplementowana w elektronicznym sterowaniu kierownicy w samochodzie będzie działać tak:
a)
Jeśli skręcamy kierownicą w prawo to samochód zawsze skręci w prawo
P=>P =1
ALE!
b)
Jeśli skręcamy kierownicą w lewo to komputer sterujący kierownicą wywołuje generator cyfr losowych G(x)={0,1} i w zależności od wyniku skręca:
1 - skręcam w lewo zgodnie z żądaniem kierowcy
0 - skręcam w prawo ignorując żądanie kierowcy
~P=L - skręcam w lewo
~P~>~P =1 - skręcam w lewo (~P=1) zgodnie z życzeniem kierowcy
lub
~P~~>P =1 - skręcam w prawo (P=1) ignorując życzenie kierowcy
Mam nadzieję, że wszyscy widzą, iż sterownie kierownicą samochodu za pośrednictwem implikacji prostej p|=>q to samobójstwo - identycznie jest w implikacji odwrotnej p|~>q.
W operatorze chaosu p|~~>q (poznamy za chwilę) to już tragedia bo tu komputer sterujący kierownicą za każdym razem będzie sobie wywoływał generator cyfr losowych G(x)={0,1} i skręcał tam gdzie mu się podoba totalnie ignorując wszelkie żądania kierowcy.

6.2 Operatory równoważności p|<=>q i q|<=>p

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> nie spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q z uwzględnieniem kontrprzykładów ~~> dotyczących wyłącznie warunku wystarczającego =>
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q:
       AB12:                      |     AB34:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                 
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0 =
      p<=>q     =  ~p<=>~q       [=]    q<=>p    =   ~q<=>~p
      =A1*B1       =A2*B2        [=]    =A3*B3       =A4*B4
        /\           /\                   /\           /\
        ||           ||                   ||           ||
        \/           \/                   \/           \/
        p=q     #   ~p=~q         #       q=p    #    ~q=~p
        I            II                   III          IV
Gdzie:
## - różne na mocy definicji
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i prawdziwość dowolnego zdania serii Bx

6.2.1 Operator równoważności p|<=>q

Obszar AB12:
Operator równoważności p|<=>q to odpowiedź na dwa pytania w spójnikach równoważności <=>:

I.
Kiedy zajdzie p (p=1)?

p (p=1) zajdzie wtedy i tylko wtedy gdy zajdzie q (q=1)
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Każda równoważność <=> definiuje tożsamość zbiorów (pojęć):
Zbiór (pojęcie) p jest tożsamy ze zbiorem (pojęciem) q
p=q
Stąd mamy:
A1: p=>q =1 - zbiór (pojęcie) p jest podzbiorem => q
B1: p~>q =1 - zbiór (pojęcie) p jest nadzbiorem ~> q
Oczywistość dla zbiorów tożsamych p=q bo:
Każdy zbiór (pojęcie) jest podzbiorem siebie samego
Każdy zbiór (pojęcie) jest nadzbiorem siebie samego

Definicja w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q +~p*~q

II.
Kiedy zajdzie ~p (~p=1)?

Nie p (~p=1) zajdzie wtedy i tylko wtedy gdy zajdzie ~q (~q=1)
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)
Każda równoważność <=> definiuje tożsamość zbiorów (pojęć):
Zbiór (pojęcie) ~p jest tożsamy ze zbiorem (pojęciem) ~q
~p=~q
Stąd mamy:
A2: ~p~>~q =1 - zbiór (pojęcie) ~p jest nadzbiorem ~> ~q
B2: ~p=>~q =1 - zbiór (pojęcie) ~p jest podzbiorem => ~q
Oczywistość dla zbiorów tożsamych p=q bo:
Każdy zbiór (pojęcie) jest podzbiorem siebie samego
Każdy zbiór (pojęcie) jest nadzbiorem siebie samego

Definicja w spójnikach „i”(*) i „lub”(+):
~p<=>~q = p*q +~p*~q

6.2.2 Operator równoważności q|<=>p

Obszar AB34:
Operator równoważności q|<=>p to odpowiedź na dwa pytania w spójnikach równoważności <=>:

III.
Kiedy zajdzie q (q=1)?

q (q=1) zajdzie wtedy i tylko wtedy gdy zajdzie p (p=1)
q<=>p = (A3: q~>p)*(B3: q=>p)
Każda równoważność <=> definiuje tożsamość zbiorów (pojęć):
Zbiór (pojęcie) q jest tożsamy ze zbiorem (pojęciem) p
q=p
Stąd mamy:
A3: q~>p =1 - zbiór (pojęcie) q jest nadzbiorem ~> p
B3: q=>p =1 - zbiór (pojęcie) q jest podzbiorem => p
Oczywistość dla zbiorów tożsamych q=p bo:
Każdy zbiór (pojęcie) jest podzbiorem siebie samego
Każdy zbiór (pojęcie) jest nadzbiorem siebie samego

Definicja w spójnikach „i”(*) i „lub”(+):
q<=>p = p*q +~p*~q

IV.
Kiedy zajdzie ~q (~q=1)?

Nie q (~q=1) zajdzie wtedy i tylko wtedy gdy zajdzie ~p (~p=1)
~q<=>~p = (A4:~q=>~p)*(B4: ~q~>~p)
Każda równoważność <=> definiuje tożsamość zbiorów (pojęć):
Zbiór (pojęcie) ~q jest tożsamy ze zbiorem (pojęciem) ~p
~q=~p
Stąd mamy:
A4: ~q=>~p =1 - zbiór (pojęcie) ~q jest podzbiorem => ~p
B4: ~q~>~p =1 - zbiór (pojęcie) ~q jest nadzbiorem ~> ~p
Oczywistość dla zbiorów tożsamych ~q=~p bo:
Każdy zbiór (pojęcie) jest podzbiorem siebie samego
Każdy zbiór (pojęcie) jest nadzbiorem siebie samego
Definicja w spójnikach „i”(*) i „lub”(+):
~q<=>~p = p*q +~p*~q

Matematycznie zachodzi tożsamość logiczna równoważności I, II, III i IV
I. p<=>q = II. ~p<=>~q = III. q<=>p = IV. ~q<=>~p = p*q + ~p*~q

6.3 Prawo papużek nierozłączek

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> nie spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q z uwzględnieniem kontrprzykładów ~~> dotyczących wyłącznie warunku wystarczającego =>
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q:
       AB12:                      |     AB34:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                 
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0 =
      p<=>q     =  ~p<=>~q       [=]    q<=>p    =   ~q<=>~p
      =A1*B1       =A2*B2        [=]    =A3*B3       =A4*B4
        /\           /\                   /\           /\
        ||           ||                   ||           ||
        \/           \/                   \/           \/
        p=q     #   ~p=~q         #       q=p    #    ~q=~p
        I            II                   III          IV
Gdzie:
## - różne na mocy definicji
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja zmiennej formalnej:
Zmienna formalna to zmienna binarna nie mająca związku z językiem potocznym człowieka (ze zmienną aktualną)
Zwyczajowo w logice matematycznej zmienne formalne oznaczane są symbolami Y, p, q, r ..

Definicja zmiennej aktualnej:
Zmienna aktualna to zmienna mająca ścisły związek z językiem potocznym człowieka
Przykłady:
P = pies
~P - nie pies
TP - trójkąt prostokątny (zmienna w logice dodatniej bo TP)
~TP - trójkąt nieprostokątny (zmienna w logice ujemnej bo ~TP)
ZWT - zbiór wszystkich trójkątów (dziedzina dla trójkątów)
etc
Definicja dziedziny:
TP+~TP = ZWT =1 - zbiór ~TP jest uzupełnieniem do wspólnej dziedziny ZWT dla zbioru TP
TP*~TP =0 - zbiory TP i ~TP są rozłączne

To samo w zapisach formalnych dla punktu odniesienia:
p=TP (zbiór trójkątów prostokątnych)
D = ZWT (wspólna dziedzina)
Formalna definicja dziedziny:
p+~p =D =1
p*~p=0
Stąd mamy:
~p=[D-p)

Punkt odniesienia w logice matematycznej:
Dla dowolnego zdania warunkowego „Jeśli … to …” w zapisie aktualnym punkt odniesienia ustalamy wtedy i tylko wtedy gdy zamierzamy rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie wypowiedziane.
Wtedy dla zdania warunkowego „Jeśli … to …” w zapisie aktualnym przyjęty punkt odniesienia to:
Parametr aktualny z wypowiedzianego zdania po „Jeśli …” = parametr formalny p (poprzednik)
Parametr aktualny z wypowiedzianego zdania po „to …”= parametr formalny q (następnik)

Przykład:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
To samo w zapisach formalnych to:
TP=p
SK=q
Stąd:
p=>q =1

Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik

Na mocy prawa punktu odniesienia w tabeli T2 interesuje nas wyłącznie obszar AB12.
Obszar AB12 graficznie możemy zilustrować w następujący sposób:
Kod:

----------------------------------     -----------------------------------
| R12:                           |     |R34:                             |
| p<=>q                          | [=] |~p<=>~q                          |
| p<=>q = (A1: p=>q)*(B1: p~>q)  |     |~p<=>~q = (A2:~p~>~q)*(B2:~p=>~q |
----------------------------------     -----------------------------------
               /\                                    /\
               ||                                    ||
               \/                                    \/
----------------------------------     -----------------------------------
| T12:                           |     |T34:                             |
| p=q - zbiory (pojęcia) tożsame |  $  |~p=~q - zbiory (pojęcia) tożsame |
| p=q <=> (A1: p=>q)*(B1: p~>q)  |     |~p=~q <=> (A2:~p~>~q)*(B2:~p=>~q |
----------------------------------     -----------------------------------
-------------------------------------------------------------------------
| D = wspólna dziedzina dla p i q                                       |
| p+~p =D =1 - zbiór (pojęcie) ~p jest uzupełnieniem p do dziedziny D   |
| p*~p =[]=0 - zbiór (pojęcie) ~p jest rozłączny ze zbiorem p           |
| q+~q =D =1 - zbiór (pojęcie) ~q jest uzupełnieniem q do dziedziny D   |
| q*~q =[]=0 - zbiór (pojęcie) ~q jest rozłączny ze zbiorem q           |
-------------------------------------------------------------------------


Prawo papużek nierozłączek:
Spójnik równoważności p<=>q i spójnik „albo”($) to papużki nierozłączki bo:
R12:
Spójnik równoważności p<=>q to zanegowany spójnik „albo”($)
Y = p<=>q = ~(p$q) = p*q+~p*~q
T12:
Spójnik „albo”($) to zanegowany spójnik równoważności:
Y = p$q = ~(p<=>q) = p*~q+~p*q

Między funkcją logiczną Y wyrażoną relacją równoważności::
R12: Y = p<=>q = ~(p$q) = p*q+~p*~q
a funkcją logiczną Y wyrażoną relacją spójnika „albo”($):
T12: Y = p$q = ~(p<=>q) = p*~q+~p*q
zachodzi relacja różne na mocy definicji ##.

Dowód:
Definicja relacji różne na mocy definicji ##:
Dwie funkcje logiczne Y są różne na mocy definicji wtedy i tyko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej #

Definicja znaczka #
Dwie funkcje logiczne są różne w znaczeniu znaczka różne # wtedy i tylko wtedy gdy jedna z nich jest zaprzeczeniem drugiej

Matematycznie zachodzi tożsamość znaczków:
Różne # = spójnik „albo”($)

Mamy wyżej:
R12: Y=p<=>q # T12: Y=~(p<=>q) =0
Definicja znaczka różne # nie jest spełniona (=0) bo funkcja logiczna R12:
R12: Y=p<=>q
Nie jest zaprzeczeniem funkcji logicznej T12 po drugiej stronie znaczka #:
~T12 = ~Y=p<=>q
Prawe strony są tożsame ale nie zachodzi tożsamość funkcji logicznych:
Y<=>~Y
Dowód:
Definicja równoważności:
p<=>q = p*q + ~p*~q
dla relacji Y<=>~Y mamy:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = [] +[] =0
Relacja równoważności Y<=>~Y, a tym samym relacja tożsamości pojęć Y=~Y jest tu fałszem.

Między Y a ~Y spełniona jest definicja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Stąd mamy:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1
cnd

6.3.1 Związek równoważności p<=>q i „albo”($) w spójnikach „i”(*) i „lub”(+)

Operator równoważności p|<=>q wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:
R12:
1.
Kiedy zajdzie Y (Y=1)?
Y = p<=>q = ~(p$q) = p*q+~p*~q
2.
Kiedy zajdzie ~Y (~Y=1)?
Negujemy równane 1 stronami:
~Y=~(p<=>q) = p$q = p*~q + ~p*q

Między 1 i 2 zachodzi relacja różne # w znaczeniu iż jedna strona jest negacją drugiej strony:
1: Y=p<=>q # 2: ~Y=~(p<=>q)

Przykład z przedszkola w języku potocznym:
Pani:
1A.
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = ~(K$T) =K*~T + ~K*~T

Operator równoważności p|<=>q wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:

1.
Kiedy pani dotrzyma słowa (Y=1)?

1A.
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = ~(K$T) =K*~T + ~K*~T
co w logice jedynek oznacza:
Y=1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
K*T = 1*1 =1 - jutro pójdziemy do kina (K=1) i pójdziemy do teatru (T=1)
LUB
~K*~T=1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Dokładnie to samo inaczej:
1B.
Y = K<=>T = ~(K$T)
Pani dotrzyma słowa gdy nie zdarzy się ~(…) że jutro pójdziemy do kina „albo”($) do teatru
Innymi słowy:
Pani dotrzyma słowa gdy nie zdarzy się ~(…) że jutro pójdziemy wyłącznie w jedno z dwóch miejsc, do kina „albo”($) do teatru.

Dokładnie to samo jeszcze inaczej:
Prawo rachunku zero-jedynkowego:
Y = p<=>q = p$~q = ~p$q
Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Mamy obliczyć:
p$~q =?
Do definicji spójnika „albo”($) podstawiamy:
q:=~q - pod zmienną binarną q podstaw ~q
Stąd:
p$~q = p*~(~q) + ~p*(~q) = p*q + ~p*~q = p<=>q
cnd

Nasz przykład:
Y = K<=>T = K$~T
co w logice jedynek oznacza:
Y=1 <=> K=1 „albo”($) ~T=1
Czytamy:
1C.
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
Jutro pójdziemy do kina (K=1) albo ($) nie pójdziemy do teatru
Y = K$~T

Oczywiście musi być jeszcze spełnione także:
Y=~K$T
1D.
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
jutro nie pójdziemy do kina (~K=1) „albo”($) pójdziemy do teatru
Y = ~K$T

Zauważmy że przypadek 1A jest zrozumiały przez każdego 5-cio latka ale 1B, 1C i 1D już nie - te przypadki wymagają umiejętności czysto matematycznych.

2.
.. kiedy pani skłamie (~Y=1)?

Gdzie:
Skłamie = nie dotrzyma słowa (~Y=1).
Negujemy równanie 1 stronami:
~Y = ~(K<=>T) = K$T = K*~T + ~K*T
co w logice jedynek oznacza:
~Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Czytamy:
2A.
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy:
K*~T = 1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do kina (~K=1)
LUB
~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Dokładnie to samo inaczej:
2B.
~Y=K$T
co w logice jedynek oznacza:
~Y=1 <=> K=1 „albo”($) T=1
Czytamy:
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) „albo”($) pójdziemy do teatru (T=1)
Spójnik „albo”($) oznacza tu pójście wyłącznie w jedno z dwóch miejsce: albo do kina, albo do teatru.

Możemy tu jeszcze skorzystać z kolejnej tożsamości:
1C.
~Y = ~(p<=>q)
Czytamy:
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy nie zdarzy się ~(…) że pójdziemy do kina wtedy i tylko wtedy <=> gdy pójdziemy do teatru.

Zauważmy, że przypadek 2A jest zrozumiały dla każdego 5-cio latka, natomiast przypadki 2B i 2C w języku potocznym nie są zrozumiałe bezproblemowo - wymagają znajomości zaawansowanej matematyki.

6.3.2 Związek „albo”($) i równoważności p<=>q w spójnikach „i”(*) i „lub”(+)

Operator „albo”(|$) wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:
A12:
1.
Kiedy zajdzie Y (Y=1)?
Y = p$q = ~(p<=>q) = p<=>~q = ~p<=>q = p*~q+~p*q
2.
Kiedy zajdzie ~Y (~Y=1)?
Negujemy równanie 1 stronami:
~Y=~(p$q) = p<=>q = p$~q = ~p$q = p*q+~p*~q
Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Mamy do udowodnienia:
~Y = p$~q =?
Podstawmy do p$q:
q:=~q - podstaw w miejsce zmiennej q zmienną ~q
stąd:
~Y = p$~q = p*~(~q) + ~p*(~q) = p*q + ~p*~q = p<=>q
cnd

Między 1 i 2 zachodzi relacja różne # w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony:
1: Y=p$q # 2: ~Y=~(p$q)

Przykład z przedszkola w języku potocznym:
Pani:
1A.
Jutro pójdziemy do kina (K=1) „albo”($) do teatru (T=1)
Y = K$T = K*~T + ~K*T

Operator logiczny „albo”($) to odpowiedź na dwa pytania 1 i 2:
1.
Kiedy pani dotrzyma słowa (Y=1)?

1A.
Jutro pójdziemy do kina (K=1) „albo”($) do teatru (T=1)
Y = K$T = K*~T + ~K*T
co w logice jedynek oznacza:
Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
K*~T = 1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
LUB
~K*T=1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)
1B.
Innymi słowy zapis:
Y=K$T
w logice jedynek oznacza:
Y=1 <=> K=1 „albo”($) T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy wyłącznie w jedno miejsce, albo do kina (K=1), albo do teatru (T=1)

Trzecia możliwość powiedzenia dokładnie tego samego to skorzystanie z tożsamości:
Y = K$T = ~(K<=>T)
stąd mamy:
1C.
Y = ~(K<=>T)
Czytamy:
Pani dotrzyma słowa (Y=1) gdy:
nie zdarzy się ~(…), że jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru

Kolejna możliwość odpowiedzi na pytanie kiedy pani dotrzyma słowa (Y=1) to skorzystanie z funkcji logicznej:
1D.
Y = p$q = p<=>~q = ~p<=>q
Dowód:
Definicja spójnika równoważności p<=>q:
p<=>q = p*q + ~p*~q
Mamy do udowodnienia:
Y = p<=>~q =?
Do definicji równoważności podstawiamy:
q:=>~q - w miejsce zmiennej q podstaw ~q
Y = p<=>(~q) = p*(~q) + ~p*~(~q) = p*~q + ~p*q =p$q
cnd
Nasz przykład:
Y = K$T = K<=>~T
co w logice jedynek oznacza:
Y=1 <=> (K=1)<=>(~T=1)
Czytamy:
Pani dotrzyma słowa (Y=1) gdy zdarzy się że:
Jutro pójdziemy do kina (K=1) wtedy i tylko wtedy gdy nie pójdziemy do teatru (~T=1)

Zauważmy, że 1A i 1B są bez problemu zrozumiałe w języku potocznym, natomiast przypadki 1C i 1D już nie - wymagają umiejętności matematycznych.

2.
.. a kiedy pani skłamie (~Y=1)?

Gdzie:
Skłamie = nie dotrzyma słowa (~Y=1).
Negujemy równanie 1A stronami:
2A.
~Y = ~(K$T) = K*T + ~K*~T
co w logice jedynek oznacza:
~Y=1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Czytamy:
2A.
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy:
K*T = 1*1 =1 - jutro pójdziemy do kina (K=1) i pójdziemy do kina (K=1)
LUB
~K*~T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Dokładnie to samo możemy wyrazić przy pomocy spójnika równoważności p<=>q:
2B.
~Y = ~(K$T) = K<=>T
co w logice jedynek oznacza:
~Y=1 <=> K=1<=>T=1
Czytamy:
Pani skłamie (~Y=1) gdy:
Jutro pójdziemy do kina (K=1) wtedy i tylko wtedy gdy pójdziemy do teatru (T=1)
~Y= K<=>T

Możemy tu jeszcze skorzystać z kolejnej tożsamości:
2C.
~Y = ~(K$T)
Czytamy:
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy nie zdarzy się ~(…) że pójdziemy do kina „albo”($) do teatru
~Y=~(K$T)

Ostatnia możliwość to skorzystanie z tożsamości:
2D.
~Y= p<=>q = p$~q
Nasz przykład:
~Y = K<=>T = K$~T
co w logice jedynek oznacza:
~Y=1 <=> (K=1)$(~T=1)
Czytamy:
Pani skłamie (~Y=1) wtedy i tylko wtedy gdy:
Jutro pójdziemy do kina (K=1) „albo”($) nie pójdziemy do teatru (~T=1)
~Y = K$~T

Zauważmy, że przypadki 2A i 2B są w języku potocznym zrozumiałe, natomiast przypadki 2C i 2D w języku potocznym nie są zrozumiałe - wymagają znajomości zaawansowanej matematyki.


6.4 Równoważność p<=>q i spójnik „albo”($) w rachunku zero-jedynkowym

Prawo papużek nierozłączek:
Spójnik równoważności p<=>q i spójnik „albo”($) to papużki nierozłączki bo:
R12:
Spójnik równoważności p<=>q to zanegowany spójnik „albo”($)
Y = p<=>q = ~(p$q) = p*q+~p*~q
T12:
Spójnik „albo”($) to zanegowany spójnik równoważności:
Y = p$q = ~(p<=>q) = p*~q+~p*q

Między funkcją logiczną Y wyrażoną relacją równoważności::
R12: Y = p<=>q = ~(p$q) = p*q+~p*~q
a funkcją logiczną Y wyrażoną relacją spójnika „albo”($):
T12: Y = p$q = ~(p<=>q) = p*~q+~p*q
zachodzi relacja różne na mocy definicji ##.

R12: Y=p<=>q ## T12: Y=p$q
Gdzie:
## - różna na mocy definicji

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne Y są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

6.4.1 Związki równoważności <=> i spójnika „albo”($) w rachunku zero-jedynkowym

Definicja tożsamości zbiorów:
Dwa zbiory (pojęcia) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q
p=q <=> (A1: p=>q)*(B1: p~>q) =p<=>q
Dowód:
dla p=q mamy:
A1: p=>p = ~p+p =1 - każdy zbiór (pojęcie) jest podzbiorem => siebie samego
B1: p~>p = p+~p =1 - każdy zbiór (pojęcie) jest nadzbiorem ~> siebie samego
cnd
Wniosek:
Równoważność p<=>q definiuje tożsamość zbiorów (pojęć) p=q

I.
Spójnik równoważności p<=>q wyrażony spójnikiem „albo”($):

Y = p<=>q = ~(p$q) =p$~q = ~p$q = p*q+~p*~q
Dowody:
1.
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Mamy do udowodnienia:
Y = ~(p$q)=?
Stąd:
Y = ~(p$q) = ~(p*~q + ~p*q) = (~p+q)*(p+~q) = ~p*p + ~p*q + q*p + q*~q = p*q+~p*~q = p<=>q
cnd
2.
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Mamy do udowodnienia:
Y = p$~q =?
Podstawmy do p$q:
q:=~q - postaw w miejsce zmiennej q zmienną ~q
mamy:
Y = p$~q = p*~(~q) + ~p*(~q) = p*q + ~p*~q = p<=>q
cnd
3.
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Mamy do udowodnienia:
Y = ~(~p$q) =?
Podstawmy do p$q:
p:=~p
Y = ~p$q = (~p)*~q + ~(~p)*q = ~p*~q + p*q = p<=>q
cnd

II.
Spójnik równoważności <=> wyrażony spójnikiem równoważności <=>:

Y = p<=>q = ~(p<=>~q) = ~(~p<=>q) =p*q + ~p*~q
Dowody:
4.
Definicja równoważności p<=>q:
p<=>q = p*q + ~p*~q
Mamy do udowodnienia:
Y = ~(p<=>~q) =?
Podstawmy do prawej strony:
q:=~q - podstaw w miejsce zmiennej q zmienną ~q
Y = ~(p<=>~q) = ~(p*~q + ~p*q) = (~p+q)*(p+~q) - prawo De Morgana
Y = ~(p<=>~q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q = p<=>q
cnd

III.
Spójnik równoważności <=> wyrażony spójnikami „i”(*) i „lub”(+):

Y = p<=>q = p*q+~p*~q
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów (pojęć) p=q
Stąd dla p=q po podstawieniu:
q:=p - podstaw w miejsce zmiennej q zmienną p
mamy:
Y = p<=>p = p*p+~p*~p = p+~p =1
cnd

Wybrane dowody w rachunku zero-jedynkowym:
Kod:

Zero-jedynkowa definicja spójnika „albo”($)
   p   q  p$q
A: 1 $ 1  =0
B: 1 $ 0  =1
C: 0 $ 0  =0
D: 0 $ 1  =1

Kod:

Zero-jedynkowa definicja spójnika równoważności p<=>q
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Mamy do udowodnienia w rachunku zero-jedynkowym tożsamość logiczną:
Y = p<=>q = ~(p$q) =~(p$~q) = ~(~p$q) = p*q+~p*~q
Kod:

T1
Dowód iż matematycznie zachodzi:
Y = p<=>q = ~(p$q) = ~(p$~q) = ~(~p$q)
          Y=   ~Y= ~(~Y)=Y=         Y=   ~(~Y)=Y=  ~Y=    ~(~Y)=Y=
   p   q p<=>q p$q ~(p$q)   ~p ~q   p$~q  ~(p$~q)   ~p$q   ~(~p$q)
A: 1<=>1  =1    0     1      0  0    1       1        1        1
B: 1<=>0  =0    1     0      0  1    0       0        0        0
C: 0<=>0  =1    0     1      1  1    1       1        1        1
D: 0<=>1  =0    1     0      1  0    0       0        0        0
   p   q   1    2     3      4  5    6       7        8        9
Zachodzi tożsamość kolumn zero-jedynkowych:
1: Y=p<=>q = 3:Y=~(p$q) = 7: Y=~(p<=>~q) = 9: Y=~(~p<=>q)
cnd

Kod:

T2
Dowód iż matematycznie zachodzi:
Y = p<=>q = p*q+~p*~q

   p   q p<=>q p*q ~p ~q ~p*~q Y=p*q+~p*~q
A: 1<=>1  =1    1   0  0   0    1
B: 1<=>0  =0    0   0  1   0    0
C: 0<=>0  =1    0   1  1   1    1
D: 0<=>1  =0    0   1  0   0    0
   p   q   1    2   3  4   5    6
Zachodzi tożsamość kolumn zero-jedynkowych:
1: Y=p<=>q = 6: Y=p*q+~p*~q
cnd


6.4.2 Związki spójnika „albo”($) i równoważności <=> w rachunku zero-jedynkowym

Definicja spójnika „albo”($):
p$q = p*~q+~p*q

Definicja równoważności p<=>q
p<=>q = p*q+~p*~q

Zdefiniujmy funkcję logiczną Y wiążącą spójnik „albo”($):
Y = p$q = p*~q +~p*~q

Matematycznie zachodzi tożsamość logiczna:
Y = p$q = ~(p<=>q) = (p<=>~q) = (~p<=>q) = p*~q + ~p*q

Dowody:
1.
Definicja równoważności p<=>q:
p<=>q = p*q+~p*~q
Mamy do udowodnienia:
Y = ~(p<=>q) =?
Y = ~(p<=>q) = ~((p*q)+(~p*~q)) = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = p*~q+~p*q = p$q
cnd
2.
Definicja równoważności p<=>q:
p<=>q = p*q+~p*~q
Mamy do udowodnienia:
Y = ~(p<=>~q) =?
Podstawmy do definicji równoważności p<=>q:
q:=~q - podstaw w miejsce zmiennej q zmienną ~q
Y = (p<=>~q) = p*~q + ~p*q =p$q
Podobnie:
Y = (~p<=>q) = ~p*q + p*~q = p$q
cnd

Wybrane dowody w rachunku zero-jedynkowym:
Kod:

Zero-jedynkowa definicja spójnika „albo”($)
   p   q  p$q
A: 1 $ 1  =0
B: 1 $ 0  =1
C: 0 $ 0  =0
D: 0 $ 1  =1

Kod:

Zero-jedynkowa definicja spójnika równoważności p<=>q
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Mamy do udowodnienia w rachunku zero-jedynkowym tożsamość logiczną:
Y = p$q = ~(p<=>q) = (p<=>~q) = (~p<=>q) = p*~q + ~p*q
Kod:

T1
Dowód iż matematycznie zachodzi:
Y = p$q = ~(p<=>q) = (p<=>~q) = (~p<=>q)

          Y=   ~Y=     Y=              Y=       Y=
   p   q  p$q  p<=>q ~(p<=>q)  ~p ~q  p<=>~q  ~p<=>q
A: 1 $ 1  =0     1       0      0  0    0        0
B: 1 $ 0  =1     0       1      0  1    1        1
C: 0 $ 0  =0     1       0      1  1    0        0
D: 0 $ 1  =1     0       1      1  0    1        1
   p   q   1     2       3      4  5    6        7
Zachodzi tożsamość kolumn zero-jedynkowych:
1: Y=p$q = 3:Y=~(p<=>q) = 6: Y=p<=>q = 7: Y=~p<=>q
cnd

Kod:

T2
Dowód iż matematycznie zachodzi:
Y = p$q = p*~q+~p*q

   p   q  p$q ~p ~q  p*~q ~p*q Y=p*~q+~p*q
A: 1 $ 1  =0   0  0   0     0   0
B: 1 $ 0  =1   0  1   1     0   1
C: 0 $ 0  =0   1  1   0     0   0
D: 0 $ 1  =1   1  0   0     1   1
   p   q   1   2  3   4     5   6
Zachodzi tożsamość kolumn zero-jedynkowych:
1: Y=p$q = 6: Y=p*~q+~p*q
cnd


Ostatnio zmieniony przez rafal3006 dnia Pon 20:23, 26 Paź 2020, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:55, 03 Sty 2021    Temat postu:

2021-01-03
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2020-12-06,17779.html#559421

Wymieniam treść punktu 3.0 na inną.
Stara wersja:

3.0 Teoria rachunku zbiorów i zdarzeń


Spis treści
3.0 Teoria rachunku zbiorów i zdarzeń 1
3.1 Definicje podstawowe w Kubusiowej teorii zbiorów 1
3.2 Podstawowe spójniki implikacyjne w zbiorach 2
3.2.1 Definicja kontrprzykładu w zbiorach 3
3.2.2 Prawa Kobry dla zbiorów 4
3.3 Podstawowe spójniki implikacyjne w zdarzeniach 4
3.3.1 Definicja kontrprzykładu w zdarzeniach 5
3.3.2 Prawo Kobry dla zdarzeń 5
3.4 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 5
3.4.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 8
3.5 Definicje operatorów logicznych w spójnikach „i”(*) i „lub”(+) 9
3.6 Definicje spójników implikacyjnych w logice dodatniej (bo q) 9
3.7 Teoria operatorów implikacyjnych 11
3.7.1 Definicja operatora implikacji prostej p||=>q i odwrotnej ~p||~>~q 11
3.7.2 Definicja operatora implikacji odwrotnej p||~>q i prostej ~p||=>~q 14
3.7.3 Definicja operatorów równoważności p|<=>q oraz ~p|<=>~q 18
3.7.4 Definicje operatorów chaosu p||~~>q i ~p||~~>~q 21



3.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

3.1 Definicje podstawowe w Kubusiowej teorii zbiorów

Przypomnijmy sobie definicje podstawowe w Kubusiowej teorii zbiorów.

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja relacji podzbioru =>:
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Z powyższego wynika że zachodzi tożsamość pojęć:
Definicja podzbioru => = relacja podzbioru =>

Pełna definicja relacji podzbioru:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy spełniona jest relacja podzbioru =>:
p=>q =1 - relacja podzbioru => jest (=1) spełniona
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Wniosek z powyższej definicji:
Każdy zbiór jest podzbiorem => siebie samego.
p=>p =1

Definicja równoważności w zbiorach:
Równoważność to relacja podzbioru => zachodząca w dwie strony
p<=>q = (A1: p=>q)*(B3: q=>p)

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p.
p=q <=> (A1: p=>q)*(B3: q=>p) =1*1 =1

Definicja nadzbioru:
Zbiór p jest nadzbiorem zbioru q wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q

Definicja relacji nadzbioru ~>:
Relacja nadzbioru p~>q jest spełniona wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q

Z powyższego wynika, że zachodzi tożsamość pojęć:
Definicja nadzbioru ~> = relacja nadzbioru ~>

Pełna definicja relacji nadzbioru ~>:
Relacja nadzbioru p~>q jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

Wniosek z powyższej definicji:
Każdy zbiór jest nadzbiorem ~> siebie samego
p~>p =1

3.2 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q

I.
Definicja elementu wspólnego ~~> zbiorów:

Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory nieskończone są rozłączne to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

II.
Definicja warunku wystarczającego => w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

3.2.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

3.2.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem => samego siebie.
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

3.3 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

3.3.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

3.3.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

3.4 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne A1 i B1:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
Funkcja logiczna p=>q = ~p+q nie jest tożsama z funkcją logiczną p~>q = p+~q
oraz nie jest zaprzeczeniem funkcji logicznej p~>q = p+~q:
~(p~>q) = ~(p+~q) = ~p*q - na mocy prawa De Morgana
cnd

Kod:

T1
Definicja warunku wystarczającego =>
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji
p=>q=~p+q ## p~>q=p+~q ## p+q

Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym:
Dwie kolumny są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

Doskonale to widać w kolumnach wynikowych tabel T1, T2 i T3. Warunek konieczny jaki musi tu być spełniony to identyczna matryca zero-jedynkowa po stronie wejść p i q bowiem wtedy i tylko wtedy możemy wnioskować o tożsamości lub braku tożsamości kolumn zero-jedynkowych. Warunek wspólnej matrycy zero-jedynkowej tabelach T1, T2 i T3 jest spełniony.

Stąd w rachunku zero-jedynkowym wyprowadzamy następujące związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =0    =0        =0    =0        =0
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =1    =1        =1    =1        =1
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Przy wypełnianiu tabeli zero-jedynkowej w rachunku zero-jedynkowym nie wolno nam zmieniać linii w sygnałach wejściowych p i q, bowiem wtedy i tylko wtedy o tym czy dane prawo zachodzi decyduje tożsamość kolumn wynikowych.
##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =1    =1        =1    =1        =1
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =0    =0        =0    =0        =0
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

3.4.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

3.5 Definicje operatorów logicznych w spójnikach „i”(*) i „lub”(+)

Dowolny operator logiczny można wyrazić spójnikami „i”(*) i „lub”(+)

Dowolny operator logiczny wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania:
1.
Kiedy funkcja logiczna przybierze wartość Y=1?
Przykład:
Y = (p*q)+ (~p*~q) - funkcja alternatywno-koniunkcyjna
co w logice jedynek oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1
2.
Kiedy funkcja logiczna przybierze wartość ~Y=1?
Nasz przykład:
Przejście z 1 do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = (~p+~q)*(p+q) - funkcja koniunkcyjno-alternatywna
W logice jedynek opisana jest wyłącznie funkcja alternatywno-koniunkcyjna, musimy zatem wymnożyć powyższy wielomian:
~Y = ~p*p + ~p*q + ~q*p + ~q*p = p*~q + ~p*q
~Y = p*~q + ~p*q - funkcja alternatywno-koniunkcyjna
co w logice jedynek oznacza:
~Y=1 <=> p=1 i ~q=1 lub ~p=1 i q=1

3.6 Definicje spójników implikacyjnych w logice dodatniej (bo q)

Definicja spójnika implikacyjnego:
Spójnik implikacyjny to spójnik wyrażony zdaniami warunkowymi „Jeśli p to q”

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Rozróżniamy cztery spójniki implikacyjne w logice dodatniej (bo q):
I.
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => jest (=1) spełniony
B1: p~>q =0 - warunek konieczny ~> nie jest (=0) spełniony

Stąd mamy definicję implikacji prostej p|=>q w równaniu logicznym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwy warunek wystarczający A1: p=>q =1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie):
A1’: p~~>~q =p*~q =0

II.
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - warunek wystarczający => nie jest (=0) spełniony
B1: p~>q =1 - warunek konieczny ~> jest (=1) spełniony

Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Uwaga:
Fałszywy warunek wystarczający A1: p=>q =0 wymusza prawdziwość kontrprzykładu A1’ (i odwrotnie):
A1’: p~~>~q =p*~q =1

III.
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => jest (=1) spełniony
B1: p~>q =1 - warunek konieczny ~> jest (=1) spełniony

Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Uwaga:
1.
Prawdziwy warunek wystarczający A1: p=>q =1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie):
A1’: p~~>~q =p*~q =0
2.
Prawo Kubusia:
B1: p~>q = B2:~p=>~q =1
stąd mamy tożsamą definicję równoważności p<=>q:
p<=>q = (A1: p=>q)*(B2:~p=>~q) =1*1 =1
Prawdziwy warunek wystarczający B2:~p=>~q=1 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie):
B2’: ~p~~>q = ~p*q =0

IV.
Definicja chaosu p|~~>q:

Definicja chaosu p|~~>q to nie zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - warunek wystarczający => nie jest (=0) spełniony
B1: p~>q =0 - warunek konieczny ~> nie jest (=0) spełniony

Stąd mamy definicję chaosu p|~~>q w równaniu logicznym:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) =1*1 =1

3.7 Teoria operatorów implikacyjnych

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

3.7.1 Definicja operatora implikacji prostej p||=>q i odwrotnej ~p||~>~q

Definicje spójników implikacyjnych p|=>q i ~p|~>~q

I.
Definicja implikacji prostej p|=>q w logice dodatniej (bo q):

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1

Definicja implikacji prostej p|=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|=>q:
      AB12:                   |      AB34:
      AB1:         AB2:       |      AB3:         AB4:
A: 1: p=>q=1  =  2:~p~>~q=1  [=]  3: q~>p=1  =  4:~q=>~p=1
##
B: 1: p~>q=0  =  2:~p=>~q=0  [=]  3: q=>p=0  =  4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji prostej p|=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii A(x) i fałszywość dowolnego zdania serii B(x)

W kolumnie AB2 mamy:
II.
Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q):

Implikacja odwrotna ~p|~>~q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =0 - ~p nie jest (=0) wystarczające => dla ~q
Stąd:
~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) =1*~(0)=1*1 =1

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q

Mamy definicję implikacji prostej p|=>q w logice dodatniej (bo q):
p|=>q = (A1: p=>q)*~(B1: p~>q)
Po skorzystaniu z praw Kubusia mamy:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2: ~p~>~q)*~(B2: ~p=>~q) = ~p|~>~q
stąd mamy tożsamość logiczną:
p|=>q = ~p|~>~q
cnd

Operator implikacji prostej p||=>q zdefiniowany jest w obszarze AB12.

III.
Definicja operatora implikacji prostej p||=>q w logice dodatniej (bo q):

Operator implikacji prostej p||=>q to odpowiedź w spójnikach implikacji prostej p|=>q i implikacji odwrotnej ~p|~>~q na dwa pytania 1 i 2:

1.
Co się stanie jeśli zajdzie p (p=1)?

Kolumna AB1
Definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q
Zajście p daje nam gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla warunku wystarczającego A1 musi być fałszem.
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =0
Nie jest możliwe (=0) jednoczesna zajście p i ~q

Komentarz:
1.
Warunek wystarczający p=>q to zdanie A1
2.
A1B1:
Implikacja prosta p|=>q to:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)
3:
Operator implikacji prostej p||=>q to układ równań logicznych A1B1 i A2B2:
A1B1:
Implikacja prosta p|=>q to:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)
A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q) =1*~(0) =1*1 =1

IV.
Definicja operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q):

Operator implikacji odwrotnej ~p||~>~q to odpowiedź w spójnikach implikacji odwrotnej ~p|~>~q i implikacji prostej p|=>q na dwa pytania 2 i 1:

2.
Co się stanie jeśli zajdzie ~p (~p=1)?

Kolumna AB2
Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q)
Implikacja odwrotna ~p|~>~q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q) =1*~(0) =1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q
LUB
Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
Możliwe jest (=1) jednoczesne zajście ~p i q

Komentarz:
1.
Warunek konieczny ~p~>~q to zdanie A2
2.
Implikacja odwrotna ~p|~>~q to:
A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q) =1*~(0) =1*1 =1
3.
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych A2B2 i A1B1:
A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q) =1*~(0) =1*1 =1
A1B1:
Implikacja prosta p|=>q to:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)

Podsumowanie istoty operatora implikacji prostej p||=>q:
1.
Doskonale widać, ze jeśli zajdzie p to mamy gwarancję matematyczną => zajścia q.
Mówi o tym zdanie A1
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
2.
Jeśli natomiast zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła”:
A2.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q =1
LUB
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1

3.7.2 Definicja operatora implikacji odwrotnej p||~>q i prostej ~p||=>~q

I.
Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):

Implikacja odwrotna p||~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 =1*1 =1

Definicja implikacji odwrotnej p|~>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
      AB12:                   |      AB34:
      AB1:         AB2:       |      AB3:         AB4:
A: 1: p=>q=0  =  2:~p~>~q=0  [=]  3: q~>p=0  =  4:~q=>~p=0
##
B: 1: p~>q=1  =  2:~p=>~q=1  [=]  3: q=>p=1  =  4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji odwrotnej p|~>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii B(x) i fałszywość dowolnego zdania serii A(x)

W kolumnie AB2 mamy:
II.
Definicja implikacji prostej ~p|=>~q w logice ujemnej (bo ~q):

Implikacja prosta ~p|=>~q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=1) wystarczające => dla ~q
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q

Mamy definicję implikacji odwrotnej p|~>q w logice dodatniej (bo q):
p|~>q = ~(A1: p=>q)*(B1: p~>q)
Po skorzystaniu z praw Kubusia mamy:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2: ~p~>~q)*(B2: ~p=>~q) = ~p|=>~q
stąd mamy tożsamość logiczną:
p|~>q = ~p|=>~q
cnd

Operator implikacji odwrotnej p||~>q i prostej ~p||=>~q zdefiniowany jest w obszarze AB12.

III.
Definicja operatora implikacji odwrotnej p||~>q w logice dodatniej (bo q):

Operator implikacji odwrotnej p||~>q to odpowiedź w spójnikach implikacji odwrotnej p|~>q i implikacji prostej ~p|=>~q na dwa pytania 1 i 2:

1.
Co się stanie jeśli zajdzie p (p=1)?

Kolumna AB1
Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1=1

Analiza w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli zajdzie p to może ~> zajść q
p~>q =1
Zajście p jest konieczne ~> dla zajścia q
LUB
Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Możliwe jest (=1) jednoczesne zajście p i ~q

Komentarz:
1.
Warunek konieczny p~>q to zdanie B1
2: Implikacja odwrotna p|~>q to:
A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1=1
3:
Operator implikacji odwrotnej p||~>q to układ równań logicznych A1B1 i A2B2:
A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1=1
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=1) wystarczające => dla ~q
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1

IV.
Definicja operatora implikacji prostej ~p||=>~q w logice ujemnej (bo ~q):

Operator implikacji prostej ~p||=>~q to odpowiedź w spójnikach implikacji prostej ~p|=>~q i odwrotnej p|~>q na dwa pytania 2 i 1:

2.
Co się stanie jeśli zajdzie ~p (~p=1)?

Kolumna AB2
Definicja implikacji prostej ~p|=>~q w logice ujemnej (bo ~q):
Implikacja prosta ~p|=>~q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=1) wystarczające => dla ~q
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q
Zajście ~p daje nam gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B2’ dla warunku wystarczającego B2 musi być fałszem.
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =0
Nie jest możliwe (=0) jednoczesna zajście ~p i q

Komentarz:
1.
Warunek wystarczający ~p=>~q to zdanie B2
2.
Implikacja prosta ~p|=>~q to:
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=1) wystarczające => dla ~q
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1
3.
Operator implikacji prostej ~p||=>~q to układ równań logicznych A2B2 i A1B1:
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=1) wystarczające => dla ~q
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1
A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1=1

Podsumowanie istoty operatora implikacji odwrotnej p||~>q:
1.
Doskonale widać że zajdzie p to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła”:
B1.
Jeśli zajdzie p to może ~> zajść q
p~>q =1
LUB
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
2.
Jeśli natomiast zajdzie ~p to mamy gwarancję matematyczną => zajścia ~q.
Mówi o tym zdanie B2
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1

3.7.3 Definicja operatorów równoważności p|<=>q oraz ~p|<=>~q

I.
Definicja równoważności p<=>q w logice dodatniej (bo q):

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q

Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja równoważności p<=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p<=>q:
      AB12:                   |      AB34:
      AB1:         AB2:       |      AB3:         AB4:
A: 1: p=>q=1  =  2:~p~>~q=1  [=]  3: q~>p=1  =  4:~q=>~p=1
##
B: 1: p~>q=1  =  2:~p=>~q=1  [=]  3: q=>p=1  =  4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję równoważności p<=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii A(x) i prawdziwość dowolnego zdania serii B(x)

W kolumnie AB2 mamy:
II.
Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):

Równoważność ~p<=>~q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=0) wystarczające => dla ~q
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1 =1

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q

Mamy definicję równoważności p<=>q w logice dodatniej (bo q):
p<=>q = (A1: p=>q)*(B1: p~>q)
Po skorzystaniu z praw Kubusia mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) = (A2: ~p~>~q)*(B2: ~p=>~q) = ~p<=>~q
stąd mamy tożsamość logiczną:
p<=>q = ~p<=>~q
cnd

Operatory równoważności p|<=>q i ~p|<=>~q zdefiniowane są w obszarze AB12.

III.
Definicja operatora równoważności p|<=>q w logice dodatniej (bo q):

Operator równoważności p|<=>q to odpowiedź w spójnikach równoważności p<=>q i ~p<=>~q na dwa pytania 1 i 2:

1.
Co się stanie jeśli zajdzie p (p=1)?

Kolumna AB1
Definicja równoważności p<=>q w logice dodatniej (bo q):
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
RA1.
Zajdzie p wtedy i tylko wtedy gdy zajdzie q

p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q
Zajście p daje nam gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1: p=>q=1 musi być fałszem.
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =0
Nie jest możliwe (=0) jednoczesne zajście p i ~q

Komentarz:
1.
Warunek wystarczający p=>q to zdanie A1
2.
Równoważność p<=>q to:
RA1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
3.
Operator równoważności p|<=>q to układ równań logicznych RA1 i RB2:
RA1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
RB2:
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=0) wystarczające => dla ~q
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)=1*1=1

IV.
Definicja operatora równoważności ~p|<=>~q w logice ujemnej (bo ~q):

Operator implikacji równoważności ~p|<=>~q to odpowiedź w spójnikach równoważności ~p<=>~q i p<=>q na dwa pytania 2 i 1:

2.
Co się stanie jeśli zajdzie ~p (~p=1)?

Kolumna AB2
Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q)
Równoważność ~p<=>~q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=0) wystarczające => dla ~q
Stąd mamy definicję równoważności ~p<=>~q w równaniu logicznym:
RB2.
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q

~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest wystarczające => dla zajścia ~q
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =0
Niemożliwe jest (=0) jednoczesne zajście ~p i q

Komentarz:
1.
Warunek wystarczający ~p=>~q to zdanie B2
2.
Równoważność ~p<=>~q to:
RB2:
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=0) wystarczające => dla ~q
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)=1*1=1
3.
Operator równoważności ~p|<=>~q to układ równań logicznych RB2 i RA1:
RB2:
A2: ~p~>~q =1 - ~p jest (=1) konieczne ~> dla ~q
B2: ~p=>~q =1 - ~p jest (=0) wystarczające => dla ~q
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)=1*1=1
RA1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Podsumowanie istoty operatora równoważności p|<=>q:
1.
Doskonale widać, ze jeśli zajdzie p to mamy gwarancję matematyczną => zajścia q.
Mówi o tym zdanie A1
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
2.
Doskonale też widać, że jeśli zajdzie ~p to również mamy gwarancję matematyczną => zajścia ~q
Mówi o tym zdanie B2.
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Wniosek:
W przeciwieństwie do implikacji prostej p||=>q i odwrotnej p||~>q w operatorze równoważności p|<=>q nie ma śladu jakiegokolwiek „rzucania monetą” w sensie „na dwoje babka wróżyła”.
W operatorze równoważności zarówno po stronie p jak i po stronie ~p mamy gwarancje matematyczne =>.
Wniosek:
Operator równoważności p|<=>q to jedyny operator logiczny możliwy do zastosowania w świecie techniki.
W przełożeniu na programowanie komputerów programista musi mieć 100% pewność => jak zareaguje program kiedy zajdzie p oraz jak zareaguje program kiedy zajdzie ~p. O żadnym „rzucaniu monetą” w sensie na dwoje babka wróżyła” w programowaniu komputerów mowy być nie może.

3.7.4 Definicje operatorów chaosu p||~~>q i ~p||~~>~q

I.
Definicja chaosu p|~~>q w logice dodatniej (bo q):

Kolumna AB1
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1B1:
A1: p=>q =0 - warunek wystarczający => nie jest spełniona (=0)
B1: p~>q =0 - warunek konieczny ~> nie jest spełniona (=0)
p|~~>q = ~(A1: p=>q)* ~(B1: p~>q) =~(0)*~(0) =1*1 =1

Matematyczne związki warunku wystarczającego => i koniecznego ~> w chaosie p|~~>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p|~~>q:
      AB12:                   |      AB34:
      AB1:         AB2:       |      AB3:         AB4:
A: 1: p=>q=0  =  2:~p~>~q=0  [=]  3: q~>p=0  =  4:~q=>~p=0
##
B: 1: p~>q=0  =  2:~p=>~q=0  [=]  3: q=>p=0  =  4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z chaosem p|~~>q potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii A(x) i fałszywość dowolnego zdania serii B(x)

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji chaosu p|~~>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę T1 o relację elementu wspólnego ~~> zbiorów p i q wnikającą z definicji kontrprzykładu działającego wyłącznie w warunkach wystarczających =>
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~> w p|~~>q:
       AB12:                      |     AB34:
       AB1:         AB2:          |     AB3:         AB4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1
Gdzie:
## - różne na mocy definicji
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwagi:
Zdania A1” i B2” kodowane zdarzeniem możliwym ~~> muszą być prawdziwe, bowiem wtedy i tylko wtedy będziemy mieli do czynienia z chaosem p|~~>q.
Dowód nie wprost:
Załóżmy, że zdanie A1” jest fałszywe:
A1”: p~~>q =0
Wówczas na mocy definicji kontrprzykładu prawdziwy byłby warunek wystarczający =>:
A1S: p=>~q =1
co prowadzi do sprzeczności z definicją chaosu p|~~>q gdzie o żadnym spełnionym warunku wystarczającym => mowy być nie może.
cnd
Identyczny dowód nie wprost możemy przeprowadzić w stosunku do zdania prawdziwego B2” oraz do zdań B3” i A4”.

II.
Definicja chaosu ~p|~>~q w logice ujemnej (bo ~q)

Kolumna AB2
Chaos ~p|~~>~q to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla ~q
B2: ~p=>~q =0 - ~p nie jest (=0) wystarczające => dla ~q
~p|~~>~q = ~(A2: ~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1=1

Operatory chaosu p||~~>q i ~p||~~>~q

III.
Definicja operatora chaosu p||~>q to odpowiedź w spójnikach chaosu p|~~>q i ~p|~~>~q na dwa pytania 1 i 2


1.
Co się stanie jeśli zajdzie p (p=1)?

Kolumna AB1.
Definicja chaosu p|~~>q w logice dodatniej bo (q):
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1B1:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) =1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
A’’.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Możliwe jest (=1) jednoczesne zajście p i q
LUB
A’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Możliwe jest (=1) jednoczesne zajście p i ~q

IV.
Definicja operatora chaosu ~p||~>~q to odpowiedź w spójnikach chaosu ~p|~~>~q i p|~~>q na dwa pytania 2 i 1


1.
Co się stanie jeśli zajdzie ~p (~p=1)?

Kolumna AB2.
Definicja chaosu ~p|~~>~q w logice ujemnej bo (~q):
Chaos ~p|~~>~q to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2B2:
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~~>~q = ~(A2:~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1 =1

Analiza w zdaniach warunkowych „Jeśli p to q”:
B’’.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q = ~p*~q =1
Możliwe jest (=1) jednoczesne zajście ~p i ~q
LUB
B’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
Możliwe jest (=1) jednoczesne zajście ~p i q

Doskonale widać, że zarówno po stronie p jak i po stronie ~p mamy tu najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.


Ostatnio zmieniony przez rafal3006 dnia Nie 16:14, 03 Sty 2021, w całości zmieniany 3 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 16:11, 03 Sty 2021    Temat postu:

2021-01-03
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2020-12-06,17779.html#559439

Wymieniam treść punktu 3.8 na inną.
Stara wersja:

Spis treści
3.8 Punkt odniesienia w logice matematycznej 1
3.8.1 Prawo Kameleona w implikacji prostej p|=>q i odwrotnej p|~>q 3
3.8.2 Prawo Kameleona w równoważności p<=>q 11
3.9 Prawda miękka i twarda, prawda absolutna 15
3.10 Dziedzina minimalna - prawo Kobry, Pytona i Zaskrońca 19
3.10.1 Filozoficzna definicja zbioru pustego [] 23
3.11 Prawdziwość/fałszywość zdań warunkowych przy znanej wartości logicznej p i q 24



3.8 Punkt odniesienia w logice matematycznej

Definicja zmiennej binarnej:
Zmienna binarna to zmienna mogąca przyjmować wyłącznie dwie wartości logiczne 0 albo 1.

Przykład:
1: uczciwy / 2: nie uczciwy
1.
U=1 - prawdą jest (=1) że jestem uczciwy (U)
albo
2.
U=0 - fałszem jest (=0), że jestem uczciwy (U)

Prawo Prosiaczka:
(p=0) = (~p=1)
Stąd mamy zmienną binarną w zapisie symbolicznym izolowaną od wszelkich zer:
1.
U - uczciwy
co w logice jedynek oznacza:
U=1 - prawdą jest (=1) że jestem uczciwy (U)
2.
~U - nie (~) uczciwy
co w logice jedynek oznacza:
~U=1 - prawdą jest (=1) że jestem nieuczciwy (~U)

Doskonale widać, że wyłącznie symboliczne zmienne binarne używane są w języku potocznym człowieka:
1: U (uczciwy) # 2: ~U (nie uczciwy)
Gdzie:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Definicja zmiennej aktualnej:
Zmienna aktualna to zmienna mająca ścisły związek z językiem potocznym człowieka
P- pies
~P - nie(~) pies

Definicja zmiennej formalnej:
Zmienna formalna to zwyczajowa zmienna binarna nie mająca związku ze zmienną aktualną.
Zwyczajowo w logice matematycznej zmienne formalne oznaczane są symbolami Y, p, q, r ..

Definicja zapisu formalnego:
Zapis formalny w logice matematycznej to zapis praw logiki matematycznej z użyciem zmiennych formalnych (zwyczajowo Y, p, q, r ..) nie związany bezpośrednio z językiem potocznym człowieka.

Definicja zapisu aktualnego:
Zapis aktualny w logice matematycznej to operowanie symbolami mającymi ścisły związek ze zdaniami w języku potocznym.
Wszelkie prawa logiki matematycznej stosujemy tu bezpośrednio w zapisach aktualnych.

Przykład:
Prawo podwójnego przeczenia w zapisach aktualnych:
Jestem uczciwy U = nie jest prawdą ~(…) że jestem nieuczciwy ~U
U = ~(~U)
To samo w zapisach formalnych:
U:=p - pod U podstaw p
stąd mamy prawo podwójnego przeczenia w zapisach formalnych (ogólnych):
p=~(~p)

Punkt odniesienia w logice matematycznej:
Dla dowolnego zdania warunkowego „Jeśli … to …” w zapisie aktualnym punkt odniesienia ustalamy wtedy i tylko wtedy gdy zamierzamy rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie wypowiedziane.

Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik

Przykład:
Twierdzenie proste Pitagorasa dla trójkątów prostokątnych:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Wartość logiczna zdania A1 jest równa 1, bo twierdzenie proste Pitagorasa matematycy udowodnili poprawnie wieki temu.

Przyjmijmy zdanie A1 za punkt odniesienia.
Na mocy prawa punktu odniesienia zapisujemy w zapisach formalnych (ogólnych):
p=>q =1
Gdzie:
p=TP
q=SK

Powyższe prawo punktu odniesienia to zaproponowany standard w logice dodatniej obowiązujący wszystkich ludzi. Matematycznie jest wszystko jedno co nazwiemy p a co q, jednak w imię wspólnego języka musimy trzymać się zaproponowanego standardu - inaczej będziemy mieli kociokwik we wzajemnym porozumiewaniu się, czego dowód będzie w kolejnym punkcie.

Analogia do świata fizyki, czyli powszechnie przyjęty standard:
1. Wektor napięcia wskazuje zawsze wyższy potencjał
2. Prąd elektryczny płynie zawsze od wyższego do niższego potencjału
Matematycznie, dla 1 i 2 możliwe są cztery różne punkty odniesienia matematycznie równie dobre, ale rozwiązując np. sieć elektryczną nie wolno mieszać przyjętego standardu w jednym rozumowaniu (zadaniu) bo wyjdą nam kosmiczne głupoty. Punkty 1 i 2 są powszechnie przyjętym standardem we wszystkich podręcznikach do nauki elektryki i elektroniki i należy to uszanować, nie robiąc bałaganu.
Ciekawostka:
W Węgierskich i Niemieckich podręcznikach fizyki znajdziemy inny punku odniesienia dla napięcia, gdzie wektor napięcia wskazuje zawsze niższy potencjał, a nie jak w krajach anglosaskich i w Polsce potencjał wyższy.

3.8.1 Prawo Kameleona w implikacji prostej p|=>q i odwrotnej p|~>q

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Prawo Kameleona to najważniejsze prawo logiki matematycznej!
Dlaczego?
Odpowiadam:
Prawo Kameleona to bezpośrednie uderzenie w fundament wszelkich ziemskich logik matematycznych gdzie dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka są z definicji tożsame.

Nie jest możliwe, aby niniejszego punktu nie zrozumiał normalny ziemski matematyk przy zdrowych zmysłach.

Zacznijmy od przypomnienia sobie fundamentów algebry Kubusia.

Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p

Gdzie:
## - różne na mocy definicji

Definicja implikacji prostej p|=>q:
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy definicję p|=>q w równaniu logicznym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1

Definicja implikacji prostej p|=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p|=>q:
      AB12:                  AB34:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji prostej p|=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii A(x) i fałszywość dowolnego zdania serii B(x)

Przykład:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest (=1) wystarczające => dla istnienia chmur bo zawsze gdy pada są chmury
Zdanie A1 przyjmujemy za punkt odniesienia:
Stąd mamy:
A1: P=>CH =1
A1: p=>q =1
p=P (pada)
q=CH (chmury)
##
Badamy prawdziwość/fałszywość dowolnego zdania serii B(x)
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
p~>q =0
Padanie nie jest (=0) konieczne ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.
Stąd mamy dowód iż zdania A1 i B1 są częścią implikacji prostej P|=>CH:
P|=>CH = (A1: P=>CH)*~(B1: CH~>P) = 1*~(0)=1*1 =1
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Dowód:
Zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to zdania te nie są logicznie tożsame, bowiem definicja warunku wystarczającego p=>q=~p+q to co innego niż definicja warunku koniecznego p~>q=p+~q. O różności tych zdań decydują znaczki => i ~> wplecione w treść zdań.

Definicja implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Definicja implikacji odwrotnej p|~>q w związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji odwrotnej p|~>q potrzeba ~> i wystarcza => udowodnić fałszywość dowolnego zdania serii A(x) i prawdziwość dowolnego zdania serii B(x)

Przykład:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są (=1) warunkiem koniecznym ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
cnd
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~P=>~CH
Zdanie B1 przyjmujemy za punkt odniesienia:
Stąd mamy:
B1: CH~>P=1
B1: p~>q =1
p=CH (chmury)
q=P (pada)
##
Badamy prawdziwość/fałszywość dowolnego zdania serii A(x)
A1.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada
cnd

Wypowiedzmy zdanie B1 kodując je zdarzeniem możliwym ~~>:
B1’
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i pada (P=1)
W dowodzie zdarzenia możliwego ~~> B1’ wystarczy pokazać jeden przypadek gdy są chmury (CH=1) i pada (P=1) co kończy dowód prawdziwości zdania B1’. Nie musimy tu odwadniać czy chmury są warunkiem koniecznym ~> dla padania.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Dowód:
Zdania B1 i B1’ brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to zdania te nie są matematycznie tożsame bowiem definicja warunku koniecznego ~> to co innego niż definicja zdarzenia możliwego ~~>. O różności tych zdań decydują znaczki ~> i ~~> wplecione w treść zdań.

Udajmy się do laboratorium techniki cyfrowej na I roku elektroniki Politechniki Warszawskiej:

Bramka „lub”(+) w poniższym opisie jest tożsama z bramką OR(+) znaną każdemu elektronikowi.
Kod:

U1
Matematyczne związki warunków wystarczających => i koniecznych ~>
w implikacji prostej p|=>q w laboratorium techniki cyfrowej
Przykład:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH=1
Padanie jest warunkiem wystarczającym => dla istnienia chmur
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
Definicja warunku wystarczającego =>:
p=>q=~p+q
Definicja warunku koniecznego ~>:
p~>q =p+~q
Stąd mamy:
      ~p      -------------------
p --o---------|Bramka „lub”(+)  |
              |                 |---
q ------------|A1: p=>q=~p+q    |  | A1: p=>q  = A2:~p~>~q  = ~p+q
              -------------------  | A1: P=>CH = A2:~P~>~CH = ~P+CH
                                   |--------------------------------
      ~p      -------------------  |                               |U1:
p --o---------|Bramka „lub”(+)  |  |                               |Y=p=>q
      ~q   q  |                 |---                               |Y=P=>CH
q---o----o----|A2:~p~>~q=~p+q   |                                  |Y=~p+q
              -------------------                                  |Y=~P+CH
                                                                   |------>
      ~p      -------------------                                  |
p --o---------|Bramka “lub”(+)  |                                  |
              |                 |---                               |
q ------------|A3: q~>p=q+~p    |  | A3: q~>p  = A4:~q=>~p  = q+~p |
              -------------------  | A3: CH~>P = A4:~CH=>~P = CH+~P|
                                   |--------------------------------
      ~p      -------------------  |
p --o---------|Bramka „lub”(+)  |  |
      ~q   q  |                 |---
q---o----o----|A4:~q=>~p=q+~p   |
              -------------------
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

###
Kod:

U2
Matematyczne związki warunków wystarczających => i koniecznych ~>
w implikacji odwrotnej p|~>q w laboratorium techniki cyfrowej
Przykład:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1
Chmury są konieczne ~> do tego, by padało
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
Definicja warunku wystarczającego =>:
p=>q=~p+q
Definicja warunku koniecznego ~>:
p~>q =p+~q
Stąd mamy:
       p      -------------------
p ------------|Bramka „lub”(+)  |
      ~q      |                 |---
q --o---------|B1: p~>q=p+~q    |  | B1: p~>q  = B2:~p=>~q  = p+~q
              -------------------  | B1: CH~>P = B2:~CH=>~P = CH+~P
                                   |--------------------------------
      ~p   p  -------------------  |                               |U2:
p --o----o----|Bramka „lub”(+)  |  |                               |Y=p~>q
      ~q      |                 |---                               |Y=CH~>P
q---o---------|B2:~p=>~q=p+~q   |                                  |Y=p+~q
              -------------------                                  |Y=CH+~P
                                                                   |------>
              -------------------                                  |
p ------------|Bramka “lub”(+)  |                                  |
      ~q      |                 |---                               |
q --o---------|B3: q=>p=~q+p    |  | B3: q=>p  = B4:~q~>~p  =~q+ p |
              -------------------  | B3: P=>CH = B4:~P=>~CH =~P+CH |
                                   |--------------------------------
      ~p   p  -------------------  |
 p --o---o----|Bramka „lub”(+)  |  |
      ~q      |                 |---
 q---o--------|B4:~q~>~p=~q+p   |
              -------------------
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Gdzie:
### - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q
Uwaga:
Matematycznie wykluczone jest, aby w definicjach implikacji prostej p|=>q i odwrotnej p|~>q parametry p i q były identyczne.
Nasz przykład:
U1.
p=P (pada)
q=CH (chmury)
U2.
p=CH (chmury)
q=P (pada)
cnd

Matematyczne relacje R1 między układami U1 i U2 są następujące:
Kod:

R1.
Matematyczne relacje między układami U1 i U2
U1:                               ### U2:
Implikacja prosta: p|=>q          ### Implikacja odwrotna p|~>q:
p|=>q=(A1: p=>q)*~(B1: p~>q)=~p*q ### p|~>q=~(A1: p=>q)*(B1: p~>q)=p*~q
Punkt odniesienia:                ### Punkt odniesienia:
p=P (pada)                        ### p=CH (chmury)
q=CH (chmury)                     ### q=P (pada)
U1: A1: p=>q  = ~p+q              ### U2: B1: p~>q  = p+~q
U1: A1: P=>CH = ~P+CH             ### U2: B1: CH~>P = CH+~P
Prawo Tygryska:                   ### Prawo Tygryska:
A1: p=>q  = A3: q~>p              ### B1: p~>q  = B3: q=>p
A1: P=>CH = A3: CH~>P             ### B3: P=>CH = B3: P=>CH
U1: A3: q~>p  = q+~p              ### U2: B3: q=>p  = ~q+p
U1: A3: CH~>P = CH+~P             ### U2: B3: P=>CH =~P+CH
Gdzie:
### - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q
p i q po obu stronach znaczka ### nie mają prawa być tymi samymi p i q
co widać na powyższym przykładzie.

Zauważmy, że matematycznie zachodzi:
Kod:

R1.
Matematyczne relacje między układami U1 i U2
U1:                               ### U2:
Implikacja prosta: p|=>q          ### Implikacja odwrotna p|~>q:
p|=>q=(A1: p=>q)*~(B1: p~>q)=~p*q ### p|~>q=~(A1: p=>q)*(B1: p~>q)=p*~q
Punkt odniesienia:                ### Punkt odniesienia:
p=P (pada)                        ### p=CH (chmury)
q=CH (chmury)                     ### q=P (pada)
-----------------------------------------------------------------------
U1: A1: p=>q  = ~p+q              ### U2: B3: q=>p  = ~q+p
U1: A1: P=>CH = ~P+CH             ### U2: B3: P=>CH = ~P+CH
Gdzie:
### - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q
p i q po obu stronach znaczka ### nie mają prawa być tymi samymi p i q
co widać na powyższym przykładzie.


Twierdzenie o matematycznym osiołku:
Dowolny ziemski matematyk który twierdzi iż tabela R1 jest matematycznie błędna powołując się na identyczność zdań w języku potocznym U1_A1: P=>CH oraz U2_B3: P=>CH z dokładnością do każdej literki i każdego przecinka jest matematycznym osiołkiem

Dowód:
Proszę się udać do laboratorium techniki cyfrowej na I roku elektroniki Politechniki Warszawskiej, które osobiście zaliczyłem 45 lat temu, zbudować układy U1 i U2 a następnie proszę połączyć wyjścia Y:
Kod:

Y = U1: A1: p=>q  = ~p+q  oraz Y = U2: B1: p~>q  = B3: q=>p  = ~q+p
Nasz przykład:
Y = U1: A1: P=>CH = ~P+CH oraz Y = U2: B1: CH~>P = B3: P=>CH = ~P+CH
Punkt odniesienia:         ### Punkt odniesienia:
U1_A1:                     ### U2_B3:
p=P (pada)                 ### p=CH (chmury)
q=CH (chmury)              ### q=P (pada)
Gdzie:
### - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q
p i q po obu stronach znaczka ### nie mają prawa być tymi samymi p i q
co widać na powyższym przykładzie.

Pewne jest, że matematyk osiołek zobaczy kupę dymu i smrodu, co jest dowodem poprawności prawa Kameleona, powszechnie występującego w logice matematycznej.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Brzmienie zdania U1_A1: P=>CH w języku potocznym jest następujące:
U1_A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada są chmury
cnd

Brzmienie zdania U2_B3: P=>CH w języku potocznym jest identyczne:
U2_B3.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada są chmury
cnd

Nie oznacza to jednak iż zachodzi tożsamość zdań:
U1_A1 = U2_B3
gdyż zdania te widziane są z różnych punktów odniesienia.
1.
Punkt odniesienia dla zdania:
U1_A1: P=>CH
U1_A1: p=>q
to
p=p (pada)
q=CH (chmury)
2.
Punkt odniesienia dla zdania:
U2_B3: P=>CH
U2_B3: q=>p
to:
p=CH (chmury)
q=P (pada)

Prawo Kameleona:
Otaczająca nas rzeczywistość wygląda różnie z różnych punktów odniesienia

Dla nazistów dobrem będzie brak Żydów, zaś dla Żydów dobrem będzie brak nazistów
Dla wierzących w Boga dobrem będzie brak ateistów, zaś dla ateistów dobrem będzie brak wierzących w Boga.
etc.

3.8.2 Prawo Kameleona w równoważności p<=>q

Definicja równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest konieczne ~> dla zajścia q
Stąd mamy najczęściej używaną w języku potocznym definicję równoważności:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
innymi słowy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Dowód:
Klikamy na googlach:
„koniecznym i wystarczającym”
Wyników: 6040
Klikamy na googlach:
„potrzeba i wystarcza”
Wyników: 12400
cnd
Gdzie:
potrzebne ~> = konieczne ~>

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii A(x) i prawdziwość dowolnego zdania serii B(x)

Dowolna równoważność definiuje tożsamość zbiorów p=q
Dowód:
Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p.
p=q <=> (A1: p=>q)*(B3: q=>p) =1*1 =1
Prawo Tygryska:
B3: q=>p = B1: p~>q
stąd mamy:
p=q <=> (A1: p=>q)*(B1: p~>q) =1*1 =1

Stąd mamy:
Definicja równoważności p<=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p nie jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy jest częścią zbioru q

Wniosek:
Każdy zbiór jest podzbiorem => siebie samego
Dowód w rachunku zero-jedynkowym:
Definicja podzbioru =>:
p=>q = ~p+q
dla p=q mamy:
p=>p = ~p+p =1
cnd

Definicja nadzbioru ~>:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
Wniosek:
Każdy zbiór jest nadzbiorem => siebie samego
Dowód w rachunku zero-jedynkowym:
Definicja nadzbioru ~>:
p~>q = p+~q
dla p=q mamy:
p~>p = p+~p =1
cnd

Wypowiedzmy równoważność Pitagorasa dla trójkątów prostokątnych:
RA1B1:
Bycie trójkątem prostokątnym (TP=1) jest warunkiem koniecznym ~> i wystarczającym => do tego aby w tym trójkącie zachodziła suma kwadratów (SK=1)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1

Zdanie matematycznie tożsame:
RA1B1:
Trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1

Prawo Tygryska:
B1: TP~>SK = B3: SK=>TP

Stąd:
Równoważność tożsama TP<=>SK dla trójkątów prostokątnych:
RA1B3:
Trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1

Równoważność TP<=>SK definiuje tożsamość zbiorów TP=SK:
TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = SK<=>TP
Twierdzenie proste Pitagorasa A1: TP=>SK i twierdzenie odwrotne Pitagorasa B3: SK=>TP ludzkość udowodniła wieki temu.

Stąd mamy:
A1.
Twierdzenie proste Pitagorasa dla trójkątów prostokątnych:
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym jest warunkiem wystarczającym => do tego aby zachodziła w nim suma kwadratów, bowiem zbiór TP jest podzbiorem => zbioru SK
Oczywistość wobec tożsamości zbiorów:
TP=SK
Każdy zbiór jest podzbiorem => siebie samego
Przyjmijmy zdanie A1 za punkt odniesienia:
A1: TP=>SK =1
A1: p=>q =1
stąd:
p=TP
q=SK

B3.
Twierdzenie odwrotne Pitagorasa dla trójkątów prostokątnych:
Jeśli w trójkącie zachodzi suma kwadratów (SK=1) to na 100% => ten trójkąt jest prostokątny
SK=>TP =~SK+TP =1
q=>p =1
p=TP
q=SK
W dowolnym trójkącie, spełniona suma kwadratów (SK=1) jest warunkiem wystarczającym => do tego aby ten trójkąt był prostokątny (TP=1), bowiem zbiór SK jest podzbiorem => zbioru TP
Oczywistość wobec tożsamości zbiorów:
SK=TP
Każdy zbiór jest nadzbiorem ~> siebie samego

Prawo Tygryska:
B3: SK=>TP = B1: TP~>SK
B3: q=>p = B1: p~>q
stąd:
Wypowiedzmy twierdzenie odwrotne Pitagorasa dla trójkątów prostokątnych w formie zdania B1.
B1.
Twierdzenie odwrotne Pitagorasa dla trójkątów prostokątnych:
Jeśli trójkąt jest prostokątny (TP=1) to na 100% ~> zachodzi w nim suma kwadratów (SK=1)
TP~>SK = TP+~SK =1
p~>q =1
p=TP
q=SK
Bycie trójkątem prostokątnym jest warunkiem koniecznym ~> do tego aby zachodziła w nim suma kwadratów, bowiem zbiór TP jest nadzbiorem ~> zbioru SK
Oczywistość wobec tożsamości zbiorów:
TP=SK
Każdy zbiór jest nadzbiorem ~> siebie samego

Zauważmy że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to zdania te nie są matematycznie tożsame.
Kod:

Dowód:
A1: TP=>SK = ~TP+SK ## B1: TP~>SK = TP+~SK
A1: p=>q   = ~p+q   ## B1: p~>q   = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mino to zdania te nie są matematycznie tożsame. O matematycznej różności tych zdań decydują znaczki => i ~> wplecione w treść zdań.

3.9 Prawda miękka i twarda, prawda absolutna

Rozważmy zdanie:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1 - chmury są konieczne ~> dla deszczu

Analiza podstawowa zdania A przez wszystkie możliwe przeczenia p i q:

Operator implikacyjny to odpowiedź na dwa pytania 1 i 2

1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?

A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1 - chmury są konieczne ~> dla deszczu
LUB
B.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P=CH*~P =1 - możliwy jest przypadek „są chmury” i „nie pada”

Chwilą czasową jest w powyższym przypadku cały jutrzejszy dzień.
Zauważmy, że:
W dniu dzisiejszym w czasie przyszłym obie jedynki są miękkimi jedynkami pociągającymi za sobą miękkie zera.
Dopóki jesteśmy dzisiaj i nie znamy przyszłości w przypadku zdań A i B możemy mówić o miękkich prawdach pociągających za sobą miękkie fałsze.
Czyli:
A.
Jeśli jutro zajdzie zdarzenie A: CH*P =1 to zdarzenie B będzie fałszem B: CH*~P=0
i odwrotnie:
B.
Jeśli jutro zajdzie zdarzenie B: CH*~P=1 to zdarzenie A będzie fałszem A: CH*P =0
Stąd mamy:

Definicja miękkiej prawdy w logice matematycznej:
Miękka prawda to prawda która może zajść ale nie musi.
Istnienie miękkiej prawdy pociąga za sobą istnienie miękkiego fałszu

Kontynuujemy dalsze możliwe przypadki związane ze zdaniami A i B.

2.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH=1)?


.. a jeśli jutro nie będzie pochmurno?
Prawo Kubusia:
A: CH~>P = C: ~CH=>~P
stąd mamy:
C.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1 - twarda jedynka
Brak chmur (~CH) jest warunkiem wystarczającym => do tego by nie padało (~P)
Brak chmur (~CH) daje nam gwarancję matematyczną => braku opadów (~P)
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna
Prawdziwy warunek wystarczający C:~CH=>~P =1 wymusza fałszywy kontrprzykład D
D.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P =~CH*P =0 - twarde zero
Zdarzenie wykluczone od minus do plus nieskończoności, nie ma najmniejszych szans aby zdarzenie D kiedykolwiek zaszło na planecie Ziemia w przedziale czasowym od minus do plus nieskończoności.

Definicja twardej prawdy:
Jeśli p to q
Z twardą prawdą mamy do czynienia wtedy i tylko wtedy gdy zajście p jest warunkiem wystarczającym => dla zajścia q

Przykład to zdanie C wyżej.
Koniec analizy podstawowej.

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry powyższą analizę możemy rozpisać w zdarzeniach możliwych ~~>.

Definicja zdarzenia możliwego ~~>:
p~~>q = p*q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
inaczej:
p~~>q = p*q =0 - niemożliwe jest (=0) jednoczesne zajście zdarzeń p i q

Stąd dla naszej chmurki i deszczu mamy tabelę zdarzeń możliwych ~~> które mogą zajść jutro:
Kod:

T1
A: CH~~> P= CH* P=1 - możliwe jest zdarzenie „są chmury” i „pada”
B: CH~~>~P= CH*~P=1 - możliwe jest zdarzenie „są chmury” i „nie pada”
C:~CH~~>~P=~CH*~P=1 - możliwe jest zdarzenie „nie ma chmur” i „nie pada”
D:~CH~~> P=~CH* P=0 - niemożliwe jest zdarzenie „nie ma chmur” i „pada”

Zauważmy, że:
1.
Na planecie Ziemia zdarzenie D nie jest możliwe, nigdy nie zaszło i nigdy nie zajdzie.
Wniosek:
Zdarzenie D to fałsz absolutny który nie ma szans stać się prawdą (jakąkolwiek prawdą)
2.
Zdarzenia ABC są wzajemnie rozłączne zarówno fizycznie jak i matematycznie.
Dowód matematycznej rozłączności zdarzeń ABC:
A*B = (CH*P)*(CH*~P) =[] =0
A*C = (CH*P)*(~CH*~P)=[] =0
B*C=(CH*~P)*(~CH*~P)=[] =0
3.
Z powyższego wynika, że:
Jeśli jutro zajdzie którekolwiek ze zdarzeń możliwych A, B lub C (prawda absolutna) to pozostałe dwa zdarzenia będą fałszem absolutnym.
W tym momencie logika matematyczna kończy swoją działalność, bo znamy rozstrzygnięcie i nie jesteśmy w stanie zmienić zaistniałego faktu.
Żadna logika matematyczna nie ma prawa zmienić zaistniałego faktu.

Przykładowo:
Załóżmy, że jest pojutrze i zaszło znane nam zdarzenie w Warszawie:
CH*~P =1 - wczoraj było pochmurno i nie padało
W tym przypadku wyłącznie linia B będzie prawdą absolutną, pozostałe linie będą fałszem absolutnym.

Dowód:
Z założenia wiemy że:
CH~~>~P = CH*~P =1 - wczoraj w Warszawie było pochmurno i nie padało
Na mocy tego założenia nasza tabela prawdy dla znanej i zdeterminowanej przeszłości wygląda tak:
Kod:

T2
A: CH~~> P= CH* P=0 - wczoraj były chmury i padało
B: CH~~>~P= CH*~P=1 - wczoraj były chmury i nie padało
C:~CH~~>~P=~CH*~P=0 - wczoraj nie było chmur i nie padało
D:~CH~~> P=~CH* P=0 - niemożliwe jest zdarzenie „nie ma chmur” i „pada”

Zdarzenie B miało miejsce w Warszawie.
Zauważmy, że nie wszyscy muszą wiedzieć jaka była pogoda w dniu wczorajszym w Warszawie.
Tylko i wyłącznie dla mieszkańców spoza Warszawy, którzy nie znają prawdy absolutnej o pogodzie w Warszawie logika matematyczna działa dalej i jest sensowna.
Innymi słowy:
Jeśli nie znamy rozstrzygnięcia to logika dalej działa w postaci identycznej serii zdań jak w naszej analizie podstawowej, tylko w zdaniach zapisanych w czasie przeszłym.

Definicja prawdy absolutnej:
Prawda absolutna to znany „fakt” który nie ma szans przejścia w fałsz.

Przykład:
Nasze zdarzenie które zaszło w Warszawie:
B: Wczoraj w Warszawie było pochmurno i nie padało
B: CH~~>~P =CH*~P =1 - znamy zaistniały „fakt”, będący prawdą absolutną
Czasu nie da się cofnąć, zatem tego „faktu” (prawdy absolutnej) nie da się zmienić.

Definicja fałszu absolutnego:
Fałsz absolutny to znany „fakt” który nie ma szans stać się prawdą.
W momencie zaistnienia powyższej prawdy absolutnej B: CH*~P na terenie Warszawy wszystkie pozostałe, możliwe zdarzenia tj. A i C stają się fałszami absolutnymi. Znanych faktów nie jesteśmy w stanie zmienić bo czasu nie da się cofnąć.

Zauważmy, że w czasie przyszłym (lub przeszłym gdy nie znamy zaistniałego faktu) zdanie C jest twardą prawdą.
C.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1 - twarda jedynka
To jest twarda prawda w czasie przyszłym lub przeszłym gdy nie znamy zaistniałego faktu.
Innymi słowy:
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało.
~CH=>~P =1 - twarda prawda
Brak chmur jest wystarczający => dla nie padania
To samo zdanie w czasie przeszłym gdy nie znamy zaistniałego faktu:
C1.
Jeśli wczoraj nie było pochmurno to na 100% => nie padało
~CH=>~P=1
Brak chmur jest wystarczający => dla nie padania

Jak widzimy z naszego przykładu twarda prawda w czasie przyszłym może przejść w fałsz absolutny w czasie przeszłym gdy zajdzie jedna z miękkich jedynek, w naszym przykładzie gdy zajdzie zdarzenie B.

Jak powyższe rozważania udowodnić matematycznie?
Mamy naszą tabelę prawdy T1 opisująca naszą rzeczywistość w czasie przyszłym lub przeszłym gdy nie znamy faktów.
Kod:

T1
A: CH~~> P= CH* P=1 - możliwe jest zdarzenie „są chmury” i „pada”
B: CH~~>~P= CH*~P=1 - możliwe jest zdarzenie „są chmury” i „nie pada”
C:~CH~~>~P=~CH*~P=1 - możliwe jest zdarzenie „nie ma chmur” i „nie pada”
D:~CH~~> P=~CH* P=0 - niemożliwe jest zdarzenie „nie ma chmur” i „pada”

Nasze zdarzenie które zaszło w Warszawie:
B: Wczoraj w Warszawie było pochmurno i nie padało
B: CH~~>~P =CH*~P =1 - znamy zaistniały „fakt”, będący prawdą absolutną
Czasu nie da się cofnąć, zatem tego „faktu” (prawdy absolutnej) nie da się zmienić.

Dowód czysto matematyczny naszych rozważań to po prostu iloczyn logiczny zaistniałego faktu CH*~P w każdej z linii ABCD.
Kod:

T3
Tabela prawdy dla zaistniałego zdarzenia x=CH*~P
                      x=
A: CH~~> P=( CH* P)*( CH*~P)=0 - fałsz absolutny
B: CH~~>~P=( CH*~P)*( CH*~P)=1 - prawda absolutna
C:~CH~~>~P=(~CH*~P)*( CH*~P)=0 - fałsz absolutny
D:~CH~~> P=(~CH* P)*( CH*~P)=0 - fałsz absolutny

Czytamy:
A.
Czy wczoraj w Warszawie było pochmurno i padało?
NIE - fałsz absolutny
B.
Czy wczoraj w Warszawie było pochmurno i nie padało?
TAK - prawda absolutna
C.
Czy wczoraj w Warszawie nie było pochmurno i nie padało?
NIE - fałsz absolutny
D.
Czy wczoraj w Warszawie nie było pochmurno i padało?
NIE - fałsz absolutny

Podsumowując:
C.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1 - twarda jedynka
To jest twarda prawda w czasie przyszłym lub przeszłym gdy nie znamy zaistniałego faktu.
Prawda ta może przejść w fałsz absolutny w czasie przeszłym.
Kontrprzykład D dla prawdziwego warunku wystarczającego C musi być fałszem.
D.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH) i pada (P)

Zauważmy że:
1.
Twarda prawda w czasie przyszłym (zdanie C) może przejść w fałsz absolutny w czasie przeszłym (tabela T3, zdanie C)
2.
Twardy fałsz w czasie przyszłym (zdanie D) nie może przejść w twardą prawdę w czasie przeszłym, bowiem niemożliwe jest (=0) zajście zdarzenia D: ~CH*P w czasie od minus do plus nieskończoności.

3.10 Dziedzina minimalna - prawo Kobry, Pytona i Zaskrońca

Weźmy zdanie bazowe (punkt odniesienia):
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy
P=>4L =1
Definicja warunku wystarczającego => jest (=1) spełniona bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd

Nasze zdanie A1 definiuje dwa zbiory:
P=[pies] =1 - zbiór jednoelementowy P=[pies] (wartość logiczna 1 bo zbiór nie jest pusty)
4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami (wartość logiczna 1 bo zbiór nie jest pusty)
Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
ZWZ=[pies, słoń, kura ..] (kura jest przedstawicielem zwierząt nie mających czterech łap)
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny:
~P = [ZWZ-P] - zbiór wszystkich zwierząt z wykluczeniem psa
~P=[słoń, kura ..] =1
~4L=[ZWZ-4L] - zbiór wszystkich zwierząt z wykluczeniem zwierząt mających cztery lapy
~4L=[kura ..] =1

Analiza matematyczna warunku wystarczającego => A1 przez wszystkie możliwe przeczenia p i q kodowane elementem wspólnym ~~> zbiorów.
A1.
Jeśli zwierzę jest psem (P=1) to może ~~> mieć cztery łapy (4L=1)
P~~>4L = P*4L =1
Definicja elementu wspólnego ~~> zbiorów P=[pies] i 4L=[pies, słoń ..] jest spełniona bo pies.
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L= P*~4L =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura..] są rozłączne.
A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> nie mieć czterech łap (~4L=1)
~P~~>~4L = ~P*~4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i ~4L=[kura..] mają co najmniej jeden element wspólny np. kurę.
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i 4L=[pies, słoń..] mają co najmniej jeden element wspólny np. słoń

Zapiszmy powyższą analizę w tabeli prawdy:
Kod:

T1
A1:  P~~> 4L=1 - zbiory P=[pies] i 4L=[pies, słoń ..] mają element wspólny
A1’: P~~>~4L=0 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~~>~4L=1 - zbiory ~P=[słoń, kura..] i ~4L=[kura] mają element wspólny
B2’:~P~~> 4L=1 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają element wspólny


Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym ~~> zbiorów: p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza matematyczna - część I:

Na mocy definicji kontrprzykładu w zbiorach mamy:
1.
Z fałszywości kontrprzykładu A1’:
A1’: P~~>~4L=0
wynika prawdziwość warunku wystarczającego => A1:
A1: P=>4L =1 - bycie psem jest warunkiem wystarczającym => do tego, by mieć cztery łapy.
2.
Prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L
stąd:
Z prawdziwości warunku wystarczającego => A1:
A1: P=>4L =1
wynika prawdziwość warunku koniecznego ~> A2:
A2: ~P~>~4L =1
Stąd nasza tabela T1 przybiera postać:
Kod:

T2
A1:  P=> 4L =1 - bo P=[pies] jest podzbiorem => 4L=[pies, słoń..]
A1’: P~~>~4L=0 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~> ~4L=1 - bo ~P=[słoń, kura..] jest nadzbiorem ~> ~4L=[kura..]
B2’:~P~~> 4L=1 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają element wspólny


Dla zdania A1 ustalmy przykładową, najszerszą możliwą dziedzinę Uniwersum.
Uniwersum (U) to zbiór wszelkich pojęć zrozumiałych dla człowieka
Innymi słowy:
U=[zbiór wszystkich zwierząt ZWZ, zbiór liczb naturalnych, mydło, powidło, miłość, rower, krasnoludek ..]

Nasze zdanie A1 przyjmie wtedy brzmienie:
A1U.
Jeśli coś jest psem to na 100% => ma cztery łapy
P=>4L =?
Zauważmy, że jeśli z obszaru Uniwersum będziemy losować cosie z dziedziny minimalnej będącej zbiorem wszystkich zwierząt ZWZ to wtedy znajdziemy się w analizie matematycznej jak wyżej omówionej dla zdania A1 (tabela T2)

Na mocy prawa Kobry warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>, co możemy zapisać jako.

A1UE.
Jeśli coś (x) jest psem to może ~~> mieć cztery łapy
x*P~~>4L = x*P*4L =?

Losujemy:
x=P (pies)
Wtedy mamy:
P*P~~>4L = P*P*4L = P*4L =1
Zdanie prawdziwe bo istnieje element wspólny zbioru P=[pies] i zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]

Na mocy prawa Kobry widzimy, że wylosowanie jakiegokolwiek cosia spoza dziedziny minimalnej zbioru wszystkich zwierząt ZWZ czyni zdanie A1UE zdaniem fałszywym bez względu na zawartość następnika.

Dowód:
Podstawmy:
x=M (miłość)
Wtedy w poprzedniku mamy:
M*P~~>4L = M*P*4L =[] =0 - bo pojęcie „miłość” jest rozłączne ze zbiorem P=[pies]

Stąd mamy.

Prawo Pytona dla zbiorów:
Dla dowolnego zdania „Jeśli p to q” nie ma sensu iterowane po elementach spoza dziedziny minimalnej definiowanej treścią zdania „Jeśli p to q” bowiem wszystkie takie zdania będą na 100% fałszywe.

Na mocy prawa Pytona mamy rozstrzygnięcie iż jedyną matematycznie poprawną dziedziną dla zdania A1 jest dziedzina minimalna:
ZWZ - zbiór wszystkich zwierząt

Mamy nasze zdanie bazowe (punkt odniesienia):
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest (=1) spełniona bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd
Dziedzina minimalna zdefiniowana treścią zdania to:
ZWZ - zbiór wszystkich zwierząt

Zastosujmy do zdania A1 prawo kontrapozycji:
A1: P=>4L = A4: ~4L=>~P

Prawdziwość zdania A1 wymusza prawdziwość zdania A4 inaczej matematyka ścisła (prawo kontrapozycji) leży w gruzach, co jest oczywiście niemożliwe.

A4.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
Definicja warunku wystarczającego => spełniona bo zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem => zwierząt nie będących psem ~P=[słoń, kruk ..]

Tu również treść zdania A4 precyzyjnie definiuje nam dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt

Stąd mamy wyprowadzone wniosek w postaci prawa Zaskrońca.

Prawo Zaskrońca:
W dowolnym prawie logiki matematycznej dziedzina musi być wspólna i minimalna

Weźmy nasze prawo kontrapozycji:
A1: P=>4L = A4: ~4L=>~P

Znaczenie tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Na mocy prawa Zaskrońca dziedzina dla zdań związanych tożsamością logiczną musi być wspólna i minimalna, zdefiniowana treścią zdania.

3.10.1 Filozoficzna definicja zbioru pustego []

Nawiązując do powyższych rozważań oraz do praw Kobry, Pytona i Zaskrońca podanych wyżej możemy pokusić się o podsumowanie problemu zbioru pustego [].

Podsumowanie problemu zbioru pustego []:
1.
Definicja Uniwersum:
Uniwersum to zbiór wszystkich pojęć zrozumiałych dla człowieka.

Uniwersum możemy podzielić na:
a)
Uniwersum indywidualne związane z konkretnym człowiekiem
b)
Uniwersum ludzkości, czyli zbiór pojęć historycznych rozpoznawalnych przez ludzkość w okresie swojego istnienia.

Oba typy Uniwersum są dynamiczne tzn. rozszerzają się gdy poznajmy nowe pojęcia oraz zawężają się gdy pojęcie ulegają zapomnieniu.
Przykład:
W okresie maturalnym bardzo dobrze znałem matematykę ale w dniu dzisiejszym pewne jest, że z marszu nie zaliczyłbym matury podstawowej z matematyki - nawet nie mam pojęcia co to jest delta w równaniu kwadratowym.
Wniosek:
Pojęć których się nie używa w życiu zawodowym w naturalny sposób zapominamy.

2.
Filozoficzna definicja zbioru pustego []:
Zbiór pusty to wszelkie pojęcia spoza Uniwersum.
Innymi słowy:
Wszystko co jest poza Uniwersum jest dla nas zbiorem pustym, co nie oznacza iż tam już nic nie ma, czyli nie ma pojęć których jeszcze nie znamy, a które możemy poznać w przyszłości.
Ten zbiór pusty poza Uniwersum jest nieskończenie wielki, pewne pojęcia na zawsze pozostaną dla nas tajemnicą np. kwestia istnienia lub nie istnienia Boga w rozumieniu różnych odłamów ludzkości.

Jest oczywistym, że ten z naszego punktu odniesienia zbiór pusty leżący poza naszym Uniwersum jest podzbiorem => siebie samego.
Stąd mamy:
[]=>[] =1
Definicja warunku wystarczającego => jest tu spełniona bo każdy zbiór jest podzbiorem siebie samego, dotyczy to także wszystkich, nieskończonych z definicji pojęć spoza naszego Uniwersum, których jeszcze nie znamy, ale które możemy poznać w przyszłości.

3.11 Prawdziwość/fałszywość zdań warunkowych przy znanej wartości logicznej p i q

W algebrze Kubusia zbiory mają wartości logiczne:
[x] =1 - zbiór niepusty, zawierający co najmniej jeden element, ma wartość logiczną 1
[] =1 - zbiór pusty, nie zawierający żadnego elementu, ma wartość logiczną 0

Rozważmy problem rodem z teorii logiki matematycznej.

Zbadaj prawdziwość/fałszywość poniższego zdania:
A1
Jeśli 2+2=4 to na 100% => 2*2=4
4=>4 =1
p=1, q=1
1=>1 =1
Definicja warunku wystarczającego => spełniona bo każdy zbiór jest podzbiorem => siebie samego
Zbiór jednoelementowy p=[4] jest podzbiorem => zbioru jednoelementowego q=[4]

Komentarz:
Użyte w zdaniu A1 znaczki sumy algebraicznej (+) i iloczynu algebraicznego (*) są dla logiki matematycznej kompletnie bez znaczenia, bowiem logika matematyczna z definicji nie zajmuje się jakimkolwiek algebraicznym liczeniem elementów w zbiorze bo jak to zrobić przy pomocy spójników „lub”(+) oraz „i”(*) z naturalnego języka potocznego?
Oczywiście to jest niewykonalne, czyli nie da się.

Uwaga!
Użyte w zdaniu A1 znaczki dodawania algebraicznego (+) i mnożenia algebraicznego (*) mają zero wspólnego z logiką matematyczną gdzie znaczki „lub”(+) oraz „i”(*) znaczą zupełnie co innego:
p+q - suma logiczna (+) zbiorów p i q
p*q = iloczyn logiczny (*) zbiorów p i q

Rozpatrzmy przypadek gdzie poprzednik i następnik jest twardą prawdą, ale nie są to zbiory tożsame.
A2.
Jeśli 2+2=4 to 2*3=6
4=> 6 =0
Wartości logiczne p i q:
p=1, q=1
1=>1 =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór jednoelementowy p=[4] nie jest podzbiorem zbioru jednoelementowego q=[6]

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem samego siebie.
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

Trzy pozostałe przypadki mutacji zdań gdzie wartość logiczna poprzednika i następnika jest znana z góry to:
B.
Jeśli 2+2=4 to 2+2=5
(2+2=4) => (2+2=5) =0
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=4 to może ~~> się zdarzyć, że 2+2=5
224~~>225 = 224*225 = 1*[] =1*0 =0
1~~>0 =1*0 =0
Gdzie:
[] - zbiór pusty
stąd na mocy prawa Kobry zdanie B jest fałszem
B: (2+2=4)=>(2+2=5) =0
cnd

Zamieńmy teraz miejscami poprzednik z następnikiem:
C.
Jeśli 2+2=5 to 2+2=4
(2+2=5)=>(2+2=4) =0
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=5 to może ~~> się zdarzyć, że 2+2=4
225~~>224 = 225*224 =[]*1 = 0*1 =0
0~~>1 = 0*1 =0
Stąd na mocy prawa Kobry zdanie C jest fałszem
(2+2=5)=>(2+2=4) =0
cnd

Weźmy ostatni możliwy przypadek:
D.
Jeśli 2+2=5 to 2+2=6
(2+2=5) => (2+2=6) =1
Dowód:
Korzystamy z prawa Kobry:
Jeśli 2+2=5 to może ~~> się zdarzyć, że 2+2=6
225~~>226 = 225*226 = []*[] =0
ALE!
0=>0 =1
Dlaczego mamy tu wynikową jedynkę a nie zero?
Odpowiedź:
Każdy zbiór jest podzbiorem => siebie samego na mocy definicji podzbioru.
Zbiór pusty [] również jest podzbiorem => siebie samego, czyli podzbiorem zbioru pustego []
Stąd:
[]=>[] =1
0=>0 =1

Na mocy powyższego otrzymujemy tabelę zero-jedynkową równoważności:
Kod:

   p   q     p<=>q
A: 1=> 1      =1
B: 1~~>0 =1*0 =0
C: 0~~>1 =0*1 =0
D: 0=> 0      =1


Ostatnio zmieniony przez rafal3006 dnia Nie 16:13, 03 Sty 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 18:43, 09 Sty 2021    Temat postu:

Algebra Kubusia - matematyka języka potocznego
Matematyczny Raj: 2021-01-06

Autor:
Kubuś ze 100-milowego lasu

Rozszyfrowali:
Rafal3006 i przyjaciele

Wszystko należy upraszczać jak tylko można, ale nie bardziej.
Albert Einstein


Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski i inni.

Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuję w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej.
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez Fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
4.
Irbisol - znakomity tester końcowej wersji algebry Kubusia, za wszelką cenę usiłujący ją obalić.
Czyż można sobie wymarzyć lepszego testera?
Finałowa dyskusja z Irbisolem!

Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2021
Niniejszy podręcznik jest końcowym efektem 15-letniej dyskusji na forach śfinia, ateista.pl i yrizona - to około 30 tys postów, średnio 5 postów dziennie wyłącznie na temat logiki matematycznej.



Części:
1.0 Kubusiowa teoria zbiorów
2.0 Nieznana algebra Boole’a
3.0 Teoria rachunku zbiorów i zdarzeń
4.0 Implikacja prosta p|=>q
5.0 Implikacja odwrotna p|~>q
6.0 Definicja chaosu p|~~>q
7.0 Definicja równoważności p<=>q
8.0 Obietnice i groźby

Algebra Boole’a dla przedszkolaków
9.0 Algebra Boole’a dla przedszkolaków

Algebra Kubusia dla LO
10.0 Algebra Kubusia dla LO
10.1 Definicja implikacji prostej p|=>q
10.2 Definicja implikacji odwrotnej p|~>q
10.3 Definicja chaosu p|~~>q
10.4 Definicja równoważności p<=>q

Dodatek 11.0: Błędy fatalne w logice matematycznej ziemian
11.0 Dodatek: Błędy fatalne w logice matematycznej ziemian

Dodatek 12.0: Prawo Kameleona w zdaniach z języka potocznego
12.0 Dodatek: Prawo Kameleona w zdaniach z języka potocznego


Wstęp

Nie jest możliwe, aby normalny ziemski matematyk nie zrozumiał wykładu algebry Kubusia dla LO:
10.0 Algebra Kubusia dla LO
Dla zrozumienia AK dla LO nie jest potrzebna algebra Boole’a.
Dokładnie z tego powodu zalecam ziemskim matematykom by swoją przygodę z algebrą Kubusia zaczęli od zrozumienia AK dla LO.
Śmietanka wiedzy w temacie algebry Kubusia zawarta jest w punkcie 3.0 który gorąco polecam wszystkim matematykom. Wymagana wiedza wstępna konieczna do zrozumienia punktu 3.0 to znajomość podstawowej algebry Boole’a.

Dlaczego od 15 lat zajmuję się logiką matematyczną?

1.
Jestem absolwentem elektroniki na Politechnice Warszawskiej (1980r) - specjalność automatyka.
Z racji wykształcenia techniczną algebrę Boole’a znam perfekcyjnie od czasów studiów i wiem, że złożone automaty cyfrowe w bramkach logicznych projektuje się w naturalnej logice matematycznej człowieka tzn. opisanej równaniami algebry Boole’a - nigdy tabelami zero-jedynkowymi!

2.
Pojęcie „Klasyczny Rachunek Zdań” usłyszałem po raz pierwszy w życiu 15 lat temu od Wuja Zbója.
Gdy usłyszałem zdania prawdziwe w KRZ to się we mnie zagotowało.
Przykładowe zdania prawdziwe w KRZ:
a) Jeśli 2+2=4 to Płock leży nad Wisłą
b) Jeśli 2+2=5 to 2+2=4
c) Jeśli 2+2=5 to jestem papieżem
Dowód (na serio!) prawdziwości tego zdania na gruncie KRZ jest tu:
[link widoczny dla zalogowanych]
… i tu:
[link widoczny dla zalogowanych]
Bertrand Russell napisał:

Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.

Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."


3.
Dlaczego z takim uporem drążyłem algebrę Kubusia?
Po zapisaniu przeze mnie praw Kubusia 15 lat temu:
p=>q = ~p~>~q
p~>q = ~p=>~q
Zrozumiałem ich sens w obsłudze obietnicy Chrystusa:
A1.
Kto wierzy we mnie będzie zbawiony
W=>Z
Tylko i wyłącznie dlatego ciągnę temat „Logika matematyczna” od 15 lat

4.
Algebra Boole’a to najtrudniejsza część algebry Kubusia. Chodzi tu o matematyczną minimalizację złożonych równań algebry Boole’a które układa się i minimalizuje w projektowaniu automatów sterujących w bramkach logicznych na I roku elektroniki studiów wyższych.
Wbrew pozorom, naturalnymi ekspertami algebry Boole’a są wszystkie 5-cio latki bowiem w języku potocznym, w komunikacji człowieka z człowiekiem, nasz mózg operuje minimalnymi równaniami algebry Boole’a, których nie da się dalej minimalizować - nie jest tu zatem potrzebna jakakolwiek teoria minimalizacji równań logicznych.
Dowód tego faktu jest tu:
9.0 Algebra Boole’a dla przedszkolaków

Początkowo chciałem napisać kompletną algebrę Kubusia dla 5-cio latków z omówieniem na przykładach wszystkich możliwych operatorów implikacyjnych:
1: Operator implikacji prostej p||=>q
2: Operator implikacji odwrotnej p||~>q
3: Operator równoważności p|<=>q
4: Operator chaosu p||~~>q
Wyszła z tego zamiaru cała masa kopiuj-wklejek z podstawowej części algebry Kubusia, dlatego z tego pomysłu zrezygnowałem.
Pozostawiam napisanie wersji algebry Kubusia dla 5-cio latków ziemskim matematykom, trzeba tu po prostu wybrać odpowiednie fragmenty z podstawowej wersji algebry Kubusia lub napisać własną wersję algebry Kubusia dla 5-cio latków.
Mam nadzieję, że klonów algebry Kubusia w różnych postaciach będzie dużo - nikt nie ma monopolu na napisanie najlepszej wersji AK, łącznie ze mną.

Moja maksyma sprzed 35 lat:
1.
Każdy duży program komputerowy, w tym teorię matematyczną zwaną algebrą Kubusia, można udoskonalać w nieskończoność. Chodzi tu oczywiście nie o błędy czysto matematyczne, bo tych na 100% nie ma, ale o formę przekazu AK dla wybranych grup ludzkości: przedszkolaki, uczniowie szkoły podstawowej, średniej, studenci, prawnicy, humaniści na zawodowych matematykach kończąc.
2.
Im dłużej się myśli tym lepszy program można napisać, tym doskonalszą wersję algebry Kubusia można zapisać.
3.
Myślenie w nieskończoność nie ma sensu, tu trzeba tworzyć coraz doskonalsze wersje, dążąc do doskonałości absolutnej, której nie da się osiągnąć z definicji bo to co jest dobre dla 5-cio latka nie musi być wystarczające dla zawodowego matematyka.

Kluczowa uwaga:
W algebrze Kubusia 100% definicji z obszaru logiki matematycznej jest sprzecznych z definicjami obowiązującymi w Klasycznym Rachunku Zdań. Nie ma więc najmniejszego sensu czytanie algebry Kubusia i porównywanie tutejszych definicji z definicjami obowiązującymi w KRZ.
Jestem pewien, że nie ma wewnętrznej sprzeczności w algebrze Kubusia, bo wszystko jest tu w 100% zgodne z teorią bramek logicznych, której ekspertem jestem od czasu zaliczenia laboratorium techniki cyfrowej na I roku Politechniki Warszawskiej (1975r), gdzie budowaliśmy złożone automaty cyfrowe w bramkach logicznych - wtedy mikroprocesorów praktycznie jeszcze nie było, bowiem pierwszy przyzwoity mikroprocesor Intel i8080 narodził się w roku 1974.
Ciekawostka:
W 1974r Intel i8080 kosztował 360USD przy średniej płacy w Polsce 15USD.
[link widoczny dla zalogowanych]
Ile trzeba było pracować, by kupić ten szczyt techniki wymagający trzech napięć zasilania (+12V, +5V i -5V)?
W 1971r ukazała się pierwsza pamięć EPROM Intela i1702 o kosmicznej pojemności 256 bajtów wymagająca trzech napięć zasilania jak wyżej - w takiej pamięci można zapisać co najwyżej 256 liter.
[link widoczny dla zalogowanych]
… a dzisiaj (2020r)?
[link widoczny dla zalogowanych]
Na karcie pamięci microSD (wymiary: 11*15*1mm) z telefonu komórkowego mieści się 1024GB (1024GB=1024 miliardów bajtów-liter)


Dowód wewnętrznej sprzeczności Klasycznego Rachunku Zdań!

Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć.
Alfred Hitchcock


Wstęp:

Definicja zmiennej binarnej:
Zmienna binarna to symbol mogący w osi czasu przyjmować tylko i wyłącznie dwie wartości logiczne 1 albo 0.

Matematyczny związek wartości logicznych 1 i 0:
1 = ~0
0 = ~1
(~) - negacja

Definicja funkcji logicznej dwóch zmiennych binarnych:
Funkcja logiczna Y dwóch zmiennych binarnych p i q to cyfrowy układ logiczny dający na wyjściu binarnym Y jednoznaczne odpowiedzi na wszystkie możliwe wymuszenia na wejściach p i q.
Zachodzi tożsamość pojęć:
binarny = dwuelementowy

Wszystkie możliwe wymuszenia binarne (dwuwartościowe) na wejściach p i q to:
Kod:

Wszystkie możliwe wymuszenia binarne na wejściach p i q
   p  q  Y
A: 1  1  x
B: 1  0  x
C: 0  1  x
D: 0  0  x
Gdzie:
x=[0,1]

Z definicji funkcji logicznej wynika, że możliwe jest szesnaście i tylko szesnaście różnych na mocy definicji ## funkcji logicznych dwuargumentowych w logice dodatniej (bo Y)
Funkcje te definiujemy tabelą prawdy pokazującą wszystkie możliwe wymuszenia na wejściach p i q oraz wszystkie możliwe, różne na mocy definicji ## odpowiedzi na wyjściu Y.
Kod:

TS - tabela wszystkich możliwych spójników logicznych
Wszystkie możliwe dwuargumentowe funkcje logiczne w logice dodatniej (bo Y)
        |Grupa I        |Grupa II      |Grupa III             | Grupa IV
        |Spójniki „i”(*)|Spójniki typu |Spójniki przeciwne    | Wejścia
        |oraz „lub”(+)  |Jeśli p to q  |do grupy II           | p i q
        | Y  Y |  Y  Y  | Y  Y   Y  Y  |  Y    Y     Y    Y   | Y  Y  Y  Y
   p  q | *  + | ~* ~+  | => ~> <=> ~~>| ~=> ~(~>)   $  ~(~~>)| p  q ~p ~q
A: 1  1 | 1  1 |  0  0  | 1  1   1  1  |  0    0     0    0   | 1  1  0  0
B: 1  0 | 0  1 |  1  0  | 0  1   0  1  |  1    0     1    0   | 1  0  0  1
C: 0  1 | 0  1 |  1  0  | 1  0   0  1  |  0    1     1    0   | 0  1  1  0
D: 0  0 | 0  0 |  1  1  | 1  1   1  1  |  0    0     0    0   | 0  0  1  1
          0  1    2  3    4  5   6  7     8    9    10   11    12 13 14 15

W tabeli spójników TS po raz pierwszy w historii ludzkości zdefiniowano wszystkie występujące w logice matematycznej, elementarne znaczki logiczne.

Znaczenie najważniejszych znaczków w logice matematycznej które sukcesywnie będziemy poznawać w algebrze Kubusia:
Y=p*q - spójnik „i”(*) w języku potocznym
Y=p+q - spójnik „lub”(+) w języku potocznym
Y = p=>q =~p+q - definicja warunku wystarczającego => w języku potocznym
Y = p~>q = p+~q - definicja warunku koniecznego ~> w języku potocznym
Y = p<=>q = (A1: p=>q)*(B1: p~>q) - definicja spójnika „wtedy i tylko wtedy” <=> w języku potocznym
Y = p$q = p*~q+~p*q - definicja spójnika „albo”($) w języku potocznym
Y = p~~>q =p*q - definicja zdarzenia możliwego ~~> w teorii zdarzeń w języku potocznym
lub
Y = p~~>q =p*q - definicja elementu wspólnego zbiorów ~~> w teorii zbiorów w języku potocznym

Zacznijmy od zero-jedynkowych definicji znaczków => i ~> w algebrze Kubusia i w Klasycznym Rachunku Zdań (sic!).

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja zero-jedynkowa znaczka =>:
Kod:

T1
Zero-jedynkowa definicja znaczka =>
w algebrze Kubusia i w klasycznym Rachunku Zdań!
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>1  =1
D: 0=>0  =1


Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja zero-jedynkowa znaczka ~>:
Kod:

T2
Zero-jedynkowa definicja znaczka ~>
w algebrze Kubusia i w Klasycznym Rachunku Zdań!
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>1  =0
D: 0~>0  =1


Twierdzenie Rekina:
Dowolny ziemski matematyk który stwierdzi iż tabele zero-jedynkowe T1 i T2 nie należą do legalnych tabel zero-jedynkowych w Klasycznym Rachunku Zdań jest pacjentem zakładu zamkniętego bez klamek.

Każdy ziemski matematyk, także twardogłowy ziemski matematyk dla którego bogiem jest gówno zwane Klasycznym Rachunkiem Zdań, z dziecinną łatwością wygeneruje tu matematyczne związki znaczków => i ~>.

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>


Dowód wewnętrznej sprzeczności Klasycznego Rachunku Zdań

Weźmy tabelę zero-jedynkową znaczka => i jej legalną interpretację w Klasycznym Rachunku Zdań.

Definicja zero-jedynkowa znaczka =>:
Kod:

T1
Zero-jedynkowa definicja znaczka =>
w algebrze Kubusia i w klasycznym Rachunku Zdań!
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>1  =1
D: 0=>0  =1


Z książki Johna D. Barrowa „Kres możliwości”:

[link widoczny dla zalogowanych]
Bertrand Russell napisał:

Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.

Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."


Bertrand Russell, twórca Klasycznego Rachunku Zdań, swoją interpretacją tabeli zero-jedynkowej T1 zanurkował w potwornie śmierdzącym gównie stwierdzając iż linie C i D w tabeli zero-jedynkowej T1 należy interpretować tak.
Bertrand Russell napisał:

Wniosek z tabeli T1:
Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Mówią o tym linie C i D w tabeli T1.


Weźmy teraz legalną w Klasycznym Rachunku Zdań, bliźniaczą tabelę zero-jedynkową T2 definiującą znaczek ~>:
Kod:

T2
Zero-jedynkowa definicja znaczka ~>
w algebrze Kubusia i w Klasycznym Rachunku Zdań!
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>1  =0
D: 0~>0  =1


Teraz uwaga panowie matematycy!

W przypadku znaczka ~> nasz „geniusz” logiki matematycznej Bertrand Russell analogicznie musi tu stwierdzić co następuje.
Bertrand Russell napisał:

Wniosek z tabeli T2:
Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania prawdziwego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Mówią o tym linie A i B w tabeli T2.


Podsumowując:
Klasyczny Rachunek Zdań jest wewnętrznie sprzeczny bowiem dla tych samych wymuszeń p i q na mocy tabeli T1 stwierdza iż:
Ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe

Natomiast na mocy tabeli T2 Klasyczny Rachunek Zdań stwierdza iż:
Ze zdania prawdziwego można wywnioskować dowolne inne, fałszywe bądź prawdziwe

cnd

Twardy dowód iż ziemscy pseudo-matematycy połknęli gówno, które rzucił im na pożarcie ziemski „geniusz” logiki matematycznej Bertrand Russell:

[link widoczny dla zalogowanych]
Wikipedia napisał:

Matryca implikacji od wieków budzi kontrowersje, niekiedy sięgające samej istoty logiki.
Matryca implikacji:
Kod:

 p  q  p=>q
 1  1   1
 0  1   1
 1  0   0
 0  0   1

Z dowolnego zdania fałszywego wynika dowolne zdanie prawdziwe (drugi wiersz matrycy) i dowolne zdanie fałszywe (czwarty wiersz matrycy). Twierdzenie to znane jest od wielu wieków w postaci łacińskiej formuły Falsum sequitur quodlibet (z fałszu wynika cokolwiek, czyli wszystko).

Mimo to, gdy Bertrand Russell opublikował swój system logiki oparty na omawianej matrycy implikacji materialnej, niektórzy filozofowie przyjęli ten system za rodzaj herezji logicznej.

Ktoś próbował wykpić B. Russella, ogłaszając list otwarty, w którym zaproponował mu do rozwiązania następujące zadanie:
Ponieważ według pana można udowodnić wszystko na podstawie jednego zdania fałszywego, proszę na podstawie fałszywego zdania "5 = 4" udowodnić, że jest pan papieżem.

Na pierwszy rzut oka zadanie to może się wydać niewykonalne. Intuicyjnie bowiem nie potrafimy dojrzeć żadnego związku między zdaniem "5 = 4" a zdaniem: "B. Russell jest papieżem". Intuicji nie można jednak wierzyć ślepo, jest bowiem zawodna. Russell podjął zadanie i rozwiązał je w wyniku następującego rozumowania:
Opierając się na regule głoszącej, że od obu stron równości wolno odjąć tę samą liczbę, odejmuję od obu stron równości: "5 = 4", liczbę 3. Wyprowadzam w ten sposób ze zdania "5 = 4" zdanie "2 = 1".
Dowód, że jestem papieżem, jest już teraz zupełnie prosty: papież i ja to dwie osoby, ale 2 = 1 (w tym przypadku papież i B. Russell, czyli dwie osoby są jedną osobą), więc jestem papieżem.
Rozumowanie to jest zupełnie poprawne, zatem początkowa intuicja zgodnie z którą zadanie dane Russellowi wydawało się nierozwiązalne, okazała się zawodna.
Zdanie "B. Russell jest papieżem" rzeczywiście wynika ze zdania "5 = 4". Jest to przykład wynikania fałszu z fałszu (odpowiednik czwartego wiersza matrycy).

Równie łatwo możemy wykazać, że z tego samego zdania fałszywego wynika zdanie prawdziwe, np. zdanie "B. Russell jest wykształcony". Wystarczy do już wyprowadzonego zdania "B. Russell jest papieżem" dodać oczywiście prawdziwe zdanie "Każdy papież jest wykształcony" i mamy:
B. Russell jest papieżem
Każdy papież jest wykształcony
zatem B. Russell jest wykształcony

Można również łatwo wskazać inne, prawdziwe konsekwencje zdania "5 = 4", np. "B. Russell jest mężczyzną", "B. Russell zna język łaciński", B. Russell jest osobistością znaną w całym świecie" itp.
Teoretyczna możliwość wyprowadzenia dowolnego zdania z danego zdania fałszywego nie zawsze jest równoznaczna z praktyczna łatwością wykonania takiego zadania. Ale takie zadanie jest do rozwiązania.
________________________________________
Prof. Tadeusz Kwiatkowski (Jego Wykłady i szkice z logiki ogólnej to źródło dzisiejszej notki) komentuje:
"Twierdzenie Falsum sequitur quodlibet i — tym samym — równoważne mu łącznie drugi i czwarty wiersze matrycy implikacji są nie tylko twierdzeniami logiki, lecz stanowią ujęcie głębokiej prawdy filozoficznej dotyczącej istoty prawdy i fałszu. Prawda ma tę istotną własność, że kierowana konsekwentnie prawami logiki. nigdy nie doprowadzi do konsekwencji fałszywej. Fałsz natomiast konsekwentnie stosowany przekreśla możliwość rozróżnienia prawdy i fałszu, czyli przekreśla wartość poznania (burzy wszelki porządek logiczny!)."


Panowie ziemscy matematycy:
Czy wy na serio nie widzicie, iż połknęliście potwornie śmierdzące gówno rzucone wam przez B. Russella opisane w cytacie wyżej?


Ostatnio zmieniony przez rafal3006 dnia Sob 18:46, 09 Sty 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 18:40, 17 Sty 2021    Temat postu:

17-01-2021
Wywalone bo można to samo napisać prościej

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-06,17779.html#564439

10.0 Algebra Kubusia dla LO

10.1 Definicja implikacji prostej p|=>q

Spis treści
10.0 Algebra Kubusia dla LO 1
10.1 Układ minimalny implikacji prostej A|=>S 3
10.1.1 Fizyczna realizacja operatora implikacji prostej A||=>S 11
10.1.2 Warunek wystarczający => wyrażony spójnikami „i”(*) i „lub”(+) 15
10.1.3 Operator implikacji prostej A||=>S w I klasie LO 20
10.1.4 Fizyczna realizacja operatora implikacji odwrotnej S||~>A 24


10.0 Algebra Kubusia dla LO

Najprostszy wykład kompletnej logiki matematycznej w przykładach to omówienie czterech prostych układów sterowania żarówką poprzez różne zespoły przycisków.
Dlaczego najprostszy?
Bo układy fizyczne realizujące operatory implikacji prostej p||=>q, odwrotnej p||~>q, równoważności p|<=>q oraz chaosu p||~~>q można fizycznie zbudować, dzięki czemu łatwo zrozumieć dlaczego ziemskim matematykom wychodzi zbędność implikacji odwrotnej p||~>q w logice matematycznej.
Matematycy robią po prostu nietrywialny błąd podstawienia którego nie wyłapali mając na to 2500 lat czasu - od Sokratesa.

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” w obsłudze zdarzeń stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

10.1 Układ minimalny implikacji prostej A|=>S

Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy:
Definicja implikacji prostej p|=>q w równaniu logicznym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0) =1*1 =1

Stąd mamy:
Definicja implikacji prostej p|=>q w matematycznych związkach warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q:
      AB12:                  AB34:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji prostej p|=>q potrzeba ~> i wystarcza => udowodnić prawdziwość dowolnego zdania serii A(x) i fałszywość dowolnego zdania serii B(x)

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji prostej p|=>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
    p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Wyprowadzenie definicji implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+).
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q
stąd mamy:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
p|=>q = ~p*q

Warto zapamiętać różnicę:
Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
Definicja implikacji prostej p|=>q:
p|=>q = ~p*q

Wniosek:
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+) wskazuje prawdziwy kontrprzykład B2’ w tabeli AB12.
B2’: ~p~~>q = ~p*q =1
Na mocy definicji kontrprzykładu powyższy fakt wymusza fałszywy warunek wystarczający B2:
B2: ~p=>~q =0 - zajście ~p nie jest (=0) warunkiem wystarczającym => dla zajścia ~q

W implikacji prostej A|=>S drugi możliwy warunek wystarczający w układzie AB12 musi być prawdą:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q

Podstawowy schemat układu realizującego implikację prostą A|=>S w zdarzeniach jest następujący.
Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: p=>q = A=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S1, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S1, tylko nie mają do niego dostępu (zmienna wolna).
Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S1 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji prostej A|=>S.
Warunkiem koniecznym, aby układ S1 był fizyczną, minimalną realizacją implikacji prostej A|=>S jest przyjęcie punktu odniesienia ustawionego na przycisku A.

Na początek musimy udowodnić, iż rzeczywiście układ S1 jest fizyczną realizacją implikacji prostej A|=>S.

Fizyczną realizację implikacji prostej A|=>S w zdarzeniach opisuje kolumna A1B1.
A1B1:
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest (=1) wystarczające dla zaświecenia się żarówki S
##
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla zaświecenia się żarówki S
Gdzie:
## - różna na mocy definicji warunku wystarczającego => i koniecznego ~>
Stąd mamy:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1

Dowodzimy prawdziwości warunku wystarczającego => A1:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia się żarówki S
Stan zmiennej wolnej W jest bez znaczenia W=x gdzie x={0,1}
cnd
##
Dowodzimy fałszywości warunku koniecznego ~> B1:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =0
Wciśnięcie przycisku A (A=1) nie jest (=0) warunkiem koniecznym ~> świecenia się żarówki S (S=1), bo żarówkę może zaświecić zmienna wolna W (gdy W=1), z definicji będąca poza naszą kontrolą.
cnd
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to zdania te nie są matematycznie tożsame. O różności matematycznej tych zdań decydują znaczki warunku wystarczającego => i koniecznego ~> wplecione w treść zdań.

Definicja warunku wystarczającego =>:
A=>S = ~A+S
##
Definicja warunku koniecznego ~>:
A~>S = A+~S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy wyprowadzone prawo Kameleona.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Poprawność prawa Kameleona doskonale widać na przykładzie zdań A1 i B1 wyżej.
W tym momencie wali się fundament wszelkich logik „matematycznych” ziemian gdzie dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka są matematycznie tożsame … na mocy definicji!

Alternatywnie możemy tu skorzystać z prawa Tygryska.
Prawo Tygryska:
B1: A~>S = B3: S=>A
B3.
Jeśli żarówka świeci się to na 100% => przycisk A jest wciśnięty
S=>A =0
Świecenie się żarówki S nie jest (=0) warunkiem wystarczającym => dla wnioskowania, iż przycisk A jest wciśnięty, bo żarówkę może zaświecić zmienna wolna W (gdy W=1)
Stąd na mocy prawa Tygryska mamy:
B1: A~>S =0 - warunek konieczny ~> nie jest (=0) spełniony
cnd
Dopiero po udowodnieniu iż układ S1 jest fizyczną realizacją implikacji prostej A|=>S, co wyżej się stało, możemy skorzystać z gotowego szablonu implikacji prostej A|=>S wyrażonego spójnikami warunku wystarczającego => i koniecznego ~>.
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej A|=>S
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A:  1: A=>S  =1 = 2:~A~>~S=1     [=] 3: S~>A  =1 = 4:~S=>~A =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
A’: 1: A~~>~S=0 =                [=]             = 4:~S~~>A =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B:  1: A~>S  =0 = 2:~A=>~S=0     [=] 3: S=>A  =0 = 4:~S~>~A =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
B’:             = 2:~A~~>S=1     [=] 3: S~~>~A=1
---------------------------------------------------------------
    p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
    A|=>S=~A*S  = ~A|~>~S=~A*S   [=]  S|~>A=S*~A = ~S|=>~A=S*~A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~A=>~S=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli AB12 zachodzi:
I Prawo Kubusia:
A1: A=>S = A2: ~A~>~S =1
##
II Prawo Kubusia:
B1: A~>S = B2: ~A=>~S =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Z kolumny A1B1 odczytujemy:

Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
A1B1:
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
Stąd mamy:
Definicja implikacji prostej A|=>S w równaniu logicznym:
A|=>S = (A1: A=>S)*~(B1: A~>S) = 1*~(0) =1*1 =1

Z kolumny A2B2 odczytujemy:

Definicja implikacji odwrotnej ~A|~>~S w logice ujemnej (bo ~S):
A2B2:
Implikacja odwrotna ~A|~>~S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) warunkiem koniecznym ~> dla nie świecenia się żarówki S
B2: ~A=>~S =0 - nie wciśnięcie A nie jest (=0) warunkiem wystarczającym => dla nie świecenia S
Stąd mamy:
Definicja implikacji odwrotnej ~A|~>~S w równaniu logicznym:
~A|~>~S = (A2: ~A~>~S)*~(B2: ~A=>~S) =1*~(0) =1*1 =1

Matematycznie zachodzi tożsamość logiczna:
A|=>S = ~A|~>~S
Dowód:
Prawa Kubusia:
A1: A=>S = A2: ~A~>~S
B1: A~>S = B2: ~A=>~S
stąd:
A|=>S = (A1: A=>S)*~(B1: A~>S) = (A2: ~A~>~S)*~(B2: ~A=>~S) = ~A|~>~S
cnd

Dowód matematycznie tożsamy.
Przejdźmy z powyższym na zapis formalny (ogólny) podstawiając:
p=A
q=S
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Mamy do udowodnienia tożsamość logiczną:
p|=>q = ~p|~>~q
Gdzie:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
oraz:
~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
Prawe strony tożsamości logicznej są identyczne, co jest dowodem tożsamości logicznej:
p|=>q = ~p|~>~q
cnd

Definicja tożsamości logicznej „=”:
A|=>S = ~A|~>~S
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wniosek:
Zachodzi tożsamość matematyczna pojęć:
Tożsamość logiczna „=” to spójnik „wtedy i tylko wtedy” <=> i odwrotnie.

W AK możemy używać obu znaczków „=” i <=> wymiennie co poprawia czytelność zapisów.

Podstawa matematyczna do wymiennego używania znaczków „=” i <=>:
Każda tożsamość matematyczna „=” spełnia definicję równoważności <=> i odwrotnie.

Dowód na przykładzie:
2=2 - tożsamość z matematyki klasycznej
Definicja równoważności <=>:
p<=>q = (A1: p=>q)*(A2: p~>q) =1*1 =1
Po podstawieniu:
p=2
q=2
mamy:
2<=>2 = (A1: 2=>2)*(B1: 2~>2)=1*1 =1
bo:
A1: 2=>2 =1 - każde pojęcie jest podzbiorem => siebie samego
B1: 2~>2 =1 - każde pojęcie jest nadzbiorem ~> siebie samego
cnd

Pojęcia A i ~A są rozłączne i uzupełniają się wzajemnie do dziedziny D:
A+~A =1 =D - ~A jest uzupełnieniem do dziedziny dla A
A*~A=[] =0 - zdarzenia A i ~A są rozłączne
Dziedziną jest w tym przypadku suma logiczna wszystkich możliwych zdarzeń w temacie wciśniętego przycisku A (A=1) oraz nie wciśniętego przycisku A (~A=1).

Przycisk A może być tylko i wyłącznie wciśnięty (A=1) albo($) nie wciśnięty (~A=1).

Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Po podstawieniu:
p=A
q=~A
mamy:
A$~A = A*~(~A) + ~(A)*~A = A+~A =1

Oczywiście równoważność p<=>q definiująca tożsamość pojęć p=q musi być tu fałszem.
Dowód:
Definicja równoważności p<=>q:
p<=>q = p*q + ~p*~q
Po podstawieniu:
p=A
q=~A
mamy:
A<=>~A = A*(~A) + ~(A)*~(~A) = A*~A + ~A*A = []+[] =0
cnd

10.1.1 Fizyczna realizacja operatora implikacji prostej A||=>S

Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: p=>q = A=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Fakt iż powyższy schemat jest fizyczną realizacją implikacji prostej A|=>S udowodniliśmy wyżej.
Stąd mamy:
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~> w A|=>S
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A:  1: A=>S  =1 = 2:~A~>~S=1     [=] 3: S~>A  =1 = 4:~S=>~A =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
A’: 1: A~~>~S=0 =                [=]             = 4:~S~~>A =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B:  1: A~>S  =0 = 2:~A=>~S=0     [=] 3: S=>A  =0 = 4:~S~>~A =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
B’:             = 2:~A~~>S=1     [=] 3: S~~>~A=1
---------------------------------------------------------------
    p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
    A|=>S=~A*S  = ~A|~>~S=~A*S   [=]  S|~>A=S*~A = ~S|=>~A=S*~A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~A=>~S=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja operatora implikacji prostej A||=>S w logice dodatniej (bo S):
Operator implikacji prostej A||=>S w logice dodatniej (bo S) to odpowiedź w spójnikach implikacji prostej A|=>S i implikacji odwrotnej ~A|~>~S na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?

Kolumna A1B1:
Implikacja prosta A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1B1:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A|=>S = (A1: A=>S)*~(B1: A~>S) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’:
A1’: A~~>~S = A*~S =0 - nie jest możliwe (=0) zdarzenie: wciśnięty A (A=1) i nie świeci S (~S=1)

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”.
1.
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?

Odpowiedź:
Jeśli przycisk A jest wciśnięty (A=1) to na 100% => żarówka świeci się (S=1) - mówi o tym zdanie A1.
A1.
Jeśli przycisk A jest wciśnięty (A=1) to na 100% => żarówka świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia się żarówki S
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna ~>
Stan zmiennej wolnej W jest tu bez znaczenia: W=x gdzie x={0,1}
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1: A=>S=1 musi być fałszem
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0
Nie jest możliwe (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Stan zmiennej wolnej W jest tu bez znaczenia: W=x gdzie x={0,1}

Komentarz:
I.
Warunek wystarczający A=>S to zdanie A1

II.
Implikacja prosta A|=>S to:
A1B1:
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A|=>S = (A1: A=>S)*~(B1: A~>S) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’:
A1’: A~~>~S = A*~S =0 - nie jest możliwe (=0) zdarzenie: wciśnięty A (A=1) i nie świeci S (~S=1)

III.
Operator implikacji prostej A||=>S to układ równań logicznych A1B1 i A2B2:

A1B1:
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A|=>S = (A1: A=>S)*~(B1: A~>S) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’:
A1’: A~~>~S = A*~S =0 - nie jest możliwe (=0) zdarzenie: wciśnięty A (A=1) i nie świeci S (~S=1)

A2B2:
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =0 - nie wciśnięcie A nie jest (=0) wystarczające => dla nie świecenia S
~A|~>~S = (A2: ~A~>~S)*~(B2: ~A=>~S) = 1*~(0) =1*1 =1
Uwaga:
Fałszywość warunku wystarczającego B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: ~A~~>S = ~A*S=1 - możliwe jest (=1) zdarzenie: A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
gdy zmienna wolna W będzie ustawiona na W=1.

Definicja operatora implikacji odwrotnej ~A||~>~S w logice ujemnej (bo ~S):
Operator implikacji odwrotnej ~A||~>~S w logice ujemnej (bo ~S) to odpowiedź w spójnikach implikacji odwrotnej ~A|~>~S i implikacji prostej A|=>S na dwa pytania 2 i 1:

2.
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?

Kolumna AB2:
Implikacja odwrotna ~A|~>~S w logice ujemnej (bo ~S):
Implikacja odwrotna ~A|~>~S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =0 - nie wciśnięcie A nie jest (=0) wystarczające => dla nie świecenia S
~A|~>~S = (A2: ~A~>~S)*~(B2: ~A=>~S) = 1*~(0) =1*1 =1
Uwaga:
Fałszywość warunku wystarczającego B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: ~A~~>S = ~A*S=1 - możliwe jest (=1) zdarzenie: A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
gdy zmienna wolna W będzie ustawiona na W=1.

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”.
2.
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?

Odpowiedź:
Jeśli przycisk A nie jest wciśnięty to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
A2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1

Przypadek możliwy gdy zmienna wolna W=0.
Nie wciśnięcie przycisku A (~A=1) jest warunkiem koniecznym ~> dla nie świecenia się żarówki S (~S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~A~>~S = A1: A=>S
Wystarczy udowodnić prawdziwość A1, co wyżej się stało, by na mocy prawa Kubusia mieć pewność absolutną prawdziwości A2

LUB
Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2:~A=>~S=0 musi być prawdą
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =1
Zdarzenie możliwe (=1) bowiem zmienna wolna W będąca poza naszą kontrolą z definicji, może być ustawiona na W=1 (żarówka świeci się)

Komentarz:
I.
Warunek konieczny ~A~>~S to zdanie A2

II.
Implikacja odwrotna ~A|~>~S to:
A2B2:
Co może się wydarzyć jeśli przyciska A nie jest wciśnięty (~A=1)?
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =0 - nie wciśnięcie A nie jest (=0) wystarczające => dla nie świecenia S
~A|~>~S = (A2: ~A~>~S)*~(B2: ~A=>~S) = 1*~(0) =1*1 =1
Uwaga:
Fałszywość warunku wystarczającego B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: ~A~~>S = ~A*S=1 - możliwe jest (=1) zdarzenie: A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
gdy zmienna wolna W będzie ustawiona na W=1.

III.
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych A2B2 i A1B1:

A2B2:
Co może się wydarzyć jeśli przyciska A nie jest wciśnięty (~A=1)?
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =0 - nie wciśnięcie A nie jest (=0) wystarczające => dla nie świecenia S
~A|~>~S = (A2: ~A~>~S)*~(B2: ~A=>~S) = 1*~(0) =1*1 =1
Uwaga:
Fałszywość warunku wystarczającego B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: ~A~~>S = ~A*S=1 - możliwe jest (=1) zdarzenie: A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
gdy zmienna wolna W będzie ustawiona na W=1.

A1B1:
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A|=>S = (A1: A=>S)*~(B1: A~>S) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’:
A1’: A~~>~S = A*~S =0 - nie jest możliwe (=0) zdarzenie: wciśnięty A (A=1) i nie świeci S (~S=1)

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

T4
            Y ~Y   Analiza w logice dodatniej dla Y:
A1:  A=> S =1  0 - wciśnięcie A (A=1) wystarcza => dla świecenia S (S=1)
A1’: A~~>~S=0  1 - nie jest możliwe (=0): wciśnięty A i nie świeci S (~S)
A2: ~A~>~S =1  0 - nie wciśnięcie A jest konieczne ~> dla nie świecenia S
B2’:~A~~>S =1  0 - możliwe jest (=1): nie wciśnięty A (~A) i świeci S (S)


Podsumowanie:

Operator implikacji prostej A||=>S to odpowiedź na dwa pytania 1 i 2:
1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Jeśli przycisk A będzie wciśnięty (A=1) to mamy gwarancję matematyczną => świecenia się żarówki S.
Mówi o tym warunek wystarczający A1.
A1.
Jeśli przycisk A jest wciśnięty (A=1) to na 100% => żarówka świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia się żarówki S
Stan zmiennej wolnej W jest tu bez znaczenia, W=x gdzie x={0,1}

2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy najzwyklejsze „rzucanie monetę” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’.
A2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1 - gdy zmienna wolna jest ustawiona na W=0
LUB
B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =1 - gdy zmienna wolna W jest ustawiona na W=1

10.1.2 Warunek wystarczający => wyrażony spójnikami „i”(*) i „lub”(+)

Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: p=>q = A=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Warunek wystarczający => wyrażony spójnikami „i”(*) i „lub”(+) opisany jest równaniem logicznym:
Y = (A=>S) = ~A+S

Definicja operatora OR(|+):
Dla funkcji logicznej typu Y=p+q operator OR(|+) to odpowiedź na dwa pytania:
1.
Kiedy zajdzie Y (Y=1)
2.
Kidy zajdzie ~Y (~Y=1)

W przełożeniu na nasz przykład odpowiada to pytaniom:
1.
Które zdarzenia są możliwe (Y=1)?
2.
Które zdarzenia nie są możliwe (~Y=1)?

Znaczenie symboli:
Y=1 - zdarzenie możliwe
Czytamy:
Prawdą jest (=1) że możliwe jest zdarzenie Y (Y=1)
~Y=1 - zdarzenie niemożliwe
Czytamy:
Prawdą jest (=1) że nie jest możliwe (~) zdarzenie Y (~Y=1)

Zajmijmy się naszym przykładem:
1’
Y = (A=>S) = ~A+S
W tym przypadku najprostsze podejście do problemu to na początek rozstrzygnięcie które zdarzenia nie są możliwe (~Y=1).
Negujemy w tym celu dwustronnie równanie 1’:
~Y = ~(A=>S) = ~(~A+S) = A*~S - na mocy prawa De Morgana

Stąd mamy odpowiedź na pytanie 2:
2.
Które zdarzenia nie są możliwe (~Y=1)?

B: ~Y=A*~S
co w logice jedynek oznacza:
B: ~Y=1 <=> A=1 i ~S=1
Czytamy:
Zdarzenie niemożliwe (~Y=1) to:
Przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
~Y=A*~S =1
Doskonale to widać na schemacie S1.

Prawo Prosiaczka:
(~Y=1)= (Y=0)
stąd zapis tożsamy:
B: Y=0 <=> A=1 i ~S=1
Czytamy:
Fałszem jest (=0), że możliwe jest zdarzenie Y (Y=0):
Przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Y=0 <=> A=1 i ~S=1
Zauważmy, ze tego zapisu nie da się zapisać w domyślnym równaniu algebry Boole’a bowiem w spójniku „lub”(+) oraz w funkcji alternatywno-koniunkcyjnej domyślna wartość logiczna wszystkich zmiennych binarnych jest równa 1.
Dopiero po skorzystaniu z prawa Prosiaczka:
(Y=0)=(~Y=1)
możemy zapisać:
B: ~Y=A*~S
co w logice jedynek oznacza:
B: ~Y=1 <=> A=1 i ~S=1

Odpowiedzmy teraz na pytanie 1.
1.
Które zdarzenia są możliwe (Y=1)?

Oczywistym jest że wszelkie zdarzenia nie uwzględnione w równaniu 2 będą prawdziwe.
Stąd mamy rozłączne zdarzenia możliwe:
Y = A: A*S + C:~A*~S + D: ~A*S
co w logice jedynek oznacza:
Y=1 <=> A: A=1 i S=1 lub C: ~A=1 i ~S=1 lub D: ~A=1 i S=1

Czytamy:
Zdarzenia możliwe (Y=1) to:
A: Ya = A*S=1*1 =1 - możliwe jest zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka świeci (S=1)
lub
C: Yc = ~A*~S=1*1=1 - możliwe jest zdarzenie: A nie jest wciśnięty (~A=1) i żarówka nie świeci (~S=1)
lub
D: Yd = ~A*S =1*1 =1 - możliwe jest zdarzenie: A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
Doskonale to widać na schemacie S1

Wszystkie zdarzenia możliwe to suma logiczna funkcji cząstkowych Ya, Yc i Yd:
Y = Ya+Yc+Yd
po rozwinięciu mamy:
Y = (A=>S) = A: A*S + C:~A*~S + D: ~A*S = ~A+S

Pozostaje nam udowodnić tożsamość logiczną:
Y = A: A*S + C:~A*~S + D: ~A*S = ~A+S

Przejdźmy na zapisy formalne (ogólne) podstawiając:
p=A
q=S
stąd mamy:
Y = (p=>q) = p*q + ~p*~q + ~p*q
Minimalizujemy:
Y = p*q +~p*(~q+q)
Y = ~p + (p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = p*(~p+~q) = p*~p+p*~q
~Y = p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
Y = ~p+q

Po odtworzeniu zmiennych aktualnych (z przykładu) mamy:
Y = (A=>S) = ~A+S = A: A*S + C:~A*~S + D: ~A*S = ~A+S
cnd

Oczywistym jest ze zdarzenia możliwe A, C i D są rozłączne matematycznie i fizycznie.
Dowód matematyczny:
A*C = (A*S)*(~A*~S) =[] =0
A*D = (A*S)*(~A*S) = [] =0
C*D = (~A*~S)*(~A*S) =[] =0
cnd

Otwórzmy na zakończenie tabelę zero-jedynkową warunku wystarczającego =>.
Zapiszmy w tym celu naszą analizę w postaci tabeli prawdy:
Kod:

T1
Analiza        |Co w logice
symboliczna S1 |jedynek oznacza
         Y  ~Y |               Y
A: A* S =1  =0 |( A=1)*( S=1) =1
B: A*~S =0  =1 |( A=1)*(~S=1) =0
C:~A*~S =1  =0 |(~A=1)*(~S=1) =1
D:~A* S =1  =0 |(~A=1)*( S=1) =1
   a  b  c   d    e      f     g

Przejdźmy z powyższą tabelą na zapis formalny (ogólny) podstawiając:
p=A
q=S
stąd mamy:
Kod:

T1
Analiza        |Co w logice
symboliczna S1 |jedynek oznacza
         Y  ~Y |               Y
A: p* q =1  =0 |( p=1)*( q=1) =1
B: p*~q =0  =1 |( p=1)*(~q=1) =0
C:~p*~q =1  =0 |(~p=1)*(~q=1) =1
D:~p* q =1  =0 |(~p=1)*( q=1) =1
   a  b  c   d    e      f     g


Mamy nasz warunek wystarczający => wyrażony spójnikami „lub”(+) i „i”(*):
Y = (p=>q)=~p+q
W warunku wystarczającym =>:
p=>q
mamy do czynie ze zmiennymi niezanegowanymi

Wniosek:
Aby otrzymać tabelę zero-jedynkową warunku wystarczającego => musimy wszystkie zmienne w tabeli T1 sprowadzić do postaci niezanegowanej.
To jest zadanie trywialne dzięki prawu Prosiaczka które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Prawo Prosiaczka:
(~p=1)=(p=0)
Stąd mamy:
Kod:

T1
Analiza        |Co w logice      |Punkt odniesienia |Tabela matematycznie
symboliczna S1 |jedynek oznacza  | p=>q             |tożsama
         Y  ~Y |               Y |              Y   | p  q p=>q
A: p* q =1  =0 |( p=1)*( q=1) =1 |( p=1)*( q=1)=1   | 1=>1  =1
B: p*~q =0  =1 |( p=1)*(~q=1) =0 |( p=1)*( q=0)=0   | 1=>0  =0
C:~p*~q =1  =0 |(~p=1)*(~q=1) =1 |( p=0)*( q=0)=1   | 0=>0  =1
D:~p* q =1  =0 |(~p=1)*( q=1) =1 |( p=0)*( q=1)=1   | 0=>1  =1
   a  b  c   d    e      f     g    h      i    j     1  2   3

Tabela 123 to zero-jedynkowa definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Podsumowanie:
Zauważmy, ze po przejściu z definicją warunku wystarczającego p=>q do spójników „i”(*) i „lub”(+) o żadnym „rzucaniu monetą” w sensie „na dwoje babka wróżyła” mowy być nie może bowiem na mocy definicji operatora OR(|+) rozstrzygany tu tylko i wyłącznie dwie sprawy:
1.
Które zdarzenie są możliwe (Y)
Y = ~p+q
2.
Które zdarzenie nie są możliwe (~Y)
~Y=p*~q

Między funkcjami logicznymi Y i ~Y zachodzi definicja spójnika „albo”($).

Dowód:
Definicja spójnika „albo”($) wyrażonego spójnikami „i”(*) i „lub”(+):
p$q = p*~q + ~p*q

Nasz przykład:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y = Y+~Y =1
cnd

Oczywistym jest, ze relacja równoważności p<=>q definiująca tożsamość pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Nasz przykład:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0+0 =0

Dlaczego ziemscy matematycy nie widzą „rzucania monetą” w logice matematycznej?
Odpowiedź:
Bo zawsze korzystają z prawa przejścia z warunku wystarczającego p=>q do spójników „lub”(+) i „i”(*):
p=>q = ~p+q
gdzie o żadnym „rzucaniu monetą” mowy być nie może czego dowód mamy w niniejszym podsumowaniu.

10.1.3 Operator implikacji prostej A||=>S w I klasie LO

Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: przycisk A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Udajmy się na lekcję fizyki w I klasie LO (póki co w 100-milowym lesie).

Pan od fizyki:
A.
Czy może się zdarzyć, że przycisk A jest wciśnięty (A=1) i żarówka świeci się (S=1)?
Jaś:
TAK
Ya = A~~>S = A*S =1
Możliwe jest (=1) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka świeci się (S=1)
Stan przycisku W (zmienna wolna) jest bez znaczenia. W=x, gdzie: x={0,1}

Pan od fizyki:
B.
Czy może się zdarzyć, że przycisk A jest wciśnięty (S=1) i żarówka nie świeci się (~S=1)?
Jaś:
NIE
Yb = A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Stan przycisku W (zmienna wolna) jest bez znaczenia. W=x, gdzie: x={0,1}

Pan od fizyki:
C.
Czy może się zdarzyć, że przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)?
Jaś:
TAK
Yc = ~A~~>~S = ~A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Gdy przycisk W (zmienna wolna) ustawiony jest na W=0.

Pan od fizyki:
D.
Czy może się zdarzyć, że przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)?
Jaś:
TAK
Yd = ~A~~>S = ~A*S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy przycisk W (zmienna wolna) ustawiony jest na W=1.

Powyższe odpowiedzi na bazie schematu S1 udzieli każdy uczeń 8 klasy szkoły podstawowej. Zauważmy, że przy udzielaniu poprawnych odpowiedzi TAK/NIE definicja zmiennej wolnej sama nam wyskoczyła.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
Nasz przykład:
W=x - zmienna wolna W która może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Stąd mamy też:
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Nasz przykład:
A=x - zmienna związana która może być ustawiana na 0 albo 1 przez człowieka
Zmienna związana A jest punktem odniesienia w naszej analizie schematu S1, stąd możemy ja ustawiać na 0 albo 1.

Zapiszmy powyższą analizę w tabeli prawdy:
Kod:

T1
          Y   Analiza dla Y:
A: A~~> S=1 - możliwe jest zdarzenie: wciśnięty A (A=1) i świeci S (S=1)
B: A~~>~S=0 - niemożliwe jest zdarzenie: wciśnięty A i nie świeci S (~S=
C:~A~~>~S=1 - możliwe jest zdarzenie: nie wciśnięty A i nie świeci S
D:~A~~> S=1 - możliwe jest zdarzenie: nie wciśnięty A i świeci S

Analiza tabeli T1 w oparciu o definicję kontrprzykładu i prawa logiki matematycznej:
Część I
1.
Fałszywość kontrprzykładu B:
B: A~~>~S =0 - niemożliwe jest (=0) zdarzenie: wciśnięty A (A=1) i żarówka nie świeci się (~S=1)
Wymusza prawdziwość warunku wystarczającego => A:
A: A=>S =1 - wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia się żarówki S
2.
Prawo Kubusia:
A: A=>S = C: ~A~>~S =1
stąd:
C: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest (=1) konieczne ~> dla nie świecenia S (~S=1)
konieczne ~>, bo dodatkowo musi być zmienna wolna W=0
3.
D: ~A~~>S =1 - możliwe jest zdarzenie: nie wciśnięty A (~A=1) i świeci S (S=1)
gdy zmienna wolna W ustawiona jest na wartość W=1

Nanieśmy to do tabeli prawdy T1:
Kod:

T2
          Y   Analiza dla Y:
A: A=>  S=1 - wciśnięcie A jest wystarczające => dla świecenia S
B: A~~>~S=0 - niemożliwe jest zdarzenie: wciśnięty A i nie świeci S (~S)
C:~A~>~S =1 - nie wciśnięcie A jest konieczne ~> dla nie świecenia S
D:~A~~> S=1 - możliwe jest zdarzenie: nie wciśnięty A i świeci S

Analiza tabeli T1 w oparciu o definicję kontrprzykładu i prawa logiki matematycznej:
Część II
4.
Prawdziwość kontrprzykładu D:
D: ~A~~>S =1 - możliwe jest zdarzenie: nie wciśnięty A (~A=1) i świeci S (S=1)
wymusza fałszywość warunku wystarczającego CW:
CW: ~A=>~S=0
5.
Prawo Kubusia:
CW: ~A=>~S = AW: A~>S =0
Stąd:
Fałszywość warunku wystarczającego CW wymusza fałszywość warunku koniecznego AW:
AW: A~>S =0
Wciśnięcie A (A=1) nie jest (=0) konieczne dla świecenia się żarówki S (S=1),
bo żarówkę może zaświecić zmienna wolna W (gdy W=1) niezależnie od stanu przycisku A

Nanieśmy tą analizę do tabeli T2.
Kod:

T3
          Y
A: A=>  S=1 | AW: A~>S=0
B: A~~>~S=0 |
C:~A~>~S =1 | CW:~A=>~S=0
D:~A~~> S=1 |
            |Fałszywy warunek wystarczający CW
            |wymusza prawdziwość kontrprzykładu CW’:
            |CW’:~A~~>S=~A*S=1 - możliwe jest (=1) zdarzenie:
            |przycisk A nie wciśnięty (~A=1) i żarówka świeci się (S=1)
            |Gdy zmienna wolna W ustawiona jest na W=1

Operator implikacji prostej A||=>S to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?

Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku:
A: A=> S=1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)
AW: A~>S=0 - wciśnięcie A (A=1) nie jest (=0) konieczne ~> dla świecenia S (S=1)
A|=>S = (A: A=>S)*~(AW: A~>S) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwy warunek wystarczający A wymusza fałszywość kontrprzykładu A’:
A’: A~~>~S=A*~S =0 - nie jest możliwe (=0) zdarzenie: wciśnięty A (A=1) i nie świeci S (~S=1)

Analiza w zdaniach warunkowych „Jeśli p to q”.
1.
Co może się wydarzyć jeśli przycisk A jest wciśnięty (A=1)?

Odpowiedź:
Jeśli przycisk A jest wciśnięty (A=1) to mamy gwarancję matematyczną => iż żarówka będzie się świecić (S=1) - mówi o tym zdanie A.
A.
Jeśli przycisk A jest wciśnięty (A=1) to na 100% => świeci się żarówka S (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia się żarówki S
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}

Kontrprzykład B dla prawdziwego warunku wystarczającego => A musi być fałszem.
B.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S=0
Nie jest możliwe (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}

… a jeśli przycisk A nie jest wciśnięty (~A=1)?

2.
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?

Definicja implikacji odwrotnej ~A|~>~S w logice ujemnej (bo ~S):
Implikacja odwrotna ~A|~>~S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Z tabeli T3 odczytujemy:
C: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest (=1) konieczne ~>, aby żarówka S nie świeciła (~S=1)
Konieczne dlatego, że dodatkowo musi być W=0
CW: ~A=>~S=0 - nie wciśnięcie A (~A=1) nie jest (=0) wystarczające => dla nie świecenia S (~S=1)
Dodatkowo musi być W=0
Uwaga:
Fałszywość warunku wystarczającego CW wymusza prawdziwość kontrprzykładu CW’:
CW’: ~A~~>S = ~A*S =1 - możliwe jest (=1) zdarzenie: nie wciśnięty A (~A=1) i żarówka świeci S (S=1)
Gdy zmienna wolna W ustawiona jest na W=1
Analiza w zdaniach warunkowych „jeśli p to q”.
2.
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?

Odpowiedź:
Jeśli przycisk A nie jest wciśnięty (~A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania C i CW’
C.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1
Nie wciśnięcie przycisku A jest warunkiem koniecznym ~> dla nie świecenia się żarówki S
Koniecznym ~> dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=0
Nie wciśnięcie przycisku A (~A=1) jest warunkiem koniecznym ~> dla nie świecenia się żarówki S (~S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Prawo Kubusia samo nam tu wyskoczyło:
C: ~A~>~S = A: A=>S =1
lub
D.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
gdy zmienna wolna W ustawiona jest na W=1.

Podsumowanie:
Doskonale widać jak łatwo przejść z opisu schematu S1 w zdarzeniach możliwych ~~> (tabela T1) do wygenerowania pełnej definicji operatora implikacji prostej A||=>S opisanego analizą ciut wyżej.

10.1.4 Fizyczna realizacja operatora implikacji odwrotnej S||~>A

Przypomnijmy sobie omówiony wyżej układ implikacji prostej A|=>S:
Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: p=>q = A=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Tabela prawdy dla układu S1 z punktem odniesienia ustawionym na przycisku A jest następująca.
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej A|=>S
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A:  1: A=>S  =1 = 2:~A~>~S=1     [=] 3: S~>A  =1 = 4:~S=>~A =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
A’: 1: A~~>~S=0 =                [=]             = 4:~S~~>A =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B:  1: A~>S  =0 = 2:~A=>~S=0     [=] 3: S=>A  =0 = 4:~S~>~A =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
B’:             = 2:~A~~>S=1     [=] 3: S~~>~A=1
---------------------------------------------------------------
    p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
    A|=>S=~A*S  = ~A|~>~S=~A*S   [=]  S|~>A=S*~A = ~S|=>~A=S*~A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~A=>~S=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Spójrzmy na omówiony wyżej schemat S1 z punktu odniesienia żarówki S.
Kod:

S1_AB34 Schemat 1_AB34
Fizyczny układ minimalny implikacji odwrotnej S|~>A w zdarzeniach:
S|~>A = (A3: S~>A)*~(B3: S=>A)=1*~(0)=1*1 =1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: q~>p = S~>A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej S|~>A jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A


Implikacja odwrotna S||~>A to odpowiedź w spójnikach implikacji odwrotnej S|~>A i prostej ~S|=>~A na dwa pytania 3 i 4.

3.
Jeśli żarówka świeci się (S=1) to w jakim stanie może być przycisk A?

Kolumna A3B3
Definicja implikacji odwrotnej S|~>A w logice dodatniej (bo A):
Implikacja odwrotne S|~>A to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
Z kolumny A3B3 odczytujemy:
A3: S~>A =1 - świecenie S (S=1) jest (=1) konieczne ~> dla wnioskowania o wciśniętym A (A=1)
bo jak żarówka nie świeci (~S=1) to na 100% => nie jest wciśnięty przycisk A (~A=1)
B3: S=>A =0 - świecenie S (S=1) nie jest (=0) wystarczające => dla wnioskowania o wciśniętym A (A=1)
bo nie zawsze gdy żarówka świeci (S=1) przycisk A jest wciśnięty (A=1).
Może być zdarzenie: S=1, A=0, W=1
stąd mamy implikację odwrotną S|~>A opisaną równaniem logicznym:
S|~>A = (A3: S~>A)*~(B3: S=>A) = 1*~(0) =1*1 =1
Uwaga:
Fałszywość warunku wystarczającego B3 wymusza prawdziwość kontrprzykładu B3’:
B3’: S~~>~A=S*~A =1 - możliwe jest zdarzenie: żarówka S świeci się i przycisk A nie jest wciśnięty (~A)
gdy zmienna wolna W będzie ustawiona na W=1

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”:
Kolumna A3B3 daje odpowiedź na pytanie 3.
3.
Jeśli żarówka świeci się (S=1) to w jakim stanie może być przycisk A?

Odpowiedź:
Jeśli żarówka świeci się to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A3 i B3’

Analiza w zdaniach warunkowych „Jeśli p to q”:
A3.
Jeśli żarówka świeci się (S=1) to przycisk A może ~> być wciśnięty (A=1)
S~>A =1
Świecenie się żarówki (S=1) jest (=1) warunkiem koniecznym ~> dla wnioskowania o wciśniętym przycisku A (A=1), bo jak żarówka nie świeci się (~S=1) to przycisk A na 100% => nie jest wciśnięty (~A=1)
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
A3: S~>A = A4: ~S=>~A =1
LUB
B3’.
Jeśli żarówka świeci się (S=1) to przycisk A może ~> nie być wciśnięty (~A=1)
S~~>~A = S*~A =1
Możliwe jest (=1) zdarzenie: żarówka świeci się (S=1) i przycisk A nie jest wciśnięty (~A=1)
Doskonale to widać na schemacie S1

4.
Jeśli żarówka nie świeci się (~S=1) to w jakim stanie może być przycisk A?

Kolumna A4B4.
Definicja implikacji prostej ~S|=>~A w logice ujemnej (bo ~A):
Implikacja prosta ~S|=>~A to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
Z kolumny A4B4 odczytujemy:
A4: ~S=>~A =1 - brak świecenia żarówki S (~S) jest (=1) warunkiem wystarczającym =>
dla wnioskowania o nie wciśniętym przycisku A (~A)
B4: ~S~>~A =0 - brak świecenia żarówki (~S=1) nie jest (=0) warunkiem koniecznym ~>
dla wnioskowania o nie wciśniętym przycisku A (~A=1)
Stąd mamy definicję implikacji prostej ~S|=>~A opisaną równaniem logicznym:
~S|=>~A = (A4:~S=>~A)*~(B4:~S~>~A) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego A4 wymusza fałszywość kontrprzykładu A4’:
A4’: ~S~~>A=~S*A=0 - niemożliwe jest zdarzenie: żarówka nie świeci (~S=1) i wciśnięty A (A=1)

Kolumna A4B4 daje odpowiedź na pytanie:
4.
Jeśli żarówka nie świeci się (~S=1) to w jakim stanie może być przycisk A?

Odpowiedź:
Jeśli żarówka nie świeci się to na 100% => przycisk A nie jest wciśnięty - mówi o tym zdanie A4

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”:
A4.
Jeśli żarówka nie świeci się (~S=1) to na 100% => przycisk A nie jest wciśnięty (~A=1)
~S=>~A=1
Brak świecenia się żarówki S (~S=1) jest warunkiem wystarczającym => dla wnioskowania o braku wciśnięcie przycisku A, bo zawsze, gdy żarówka nie świeci się, przycisk A nie jest wciśnięty.
Wynika to bezpośrednio ze schematu S1.
Jedyny przypadek gdzie żarówka nie świeci się opisany jest zdarzeniem:
~S=1, ~A=1 i ~W=1
Prawo Prosiaczka:
(~p=1)=(p=0)
Stąd zapis tożsamy w logice dodatniej (brak przeczeń przy zmiennych):
S=0, A=0 i W=0
Prawdziwość warunku wystarczającego A4 wymusza fałszywość kontrprzykładu A4’:
A4’.
Jeśli żarówka nie świeci się (~S=1) to przycisk A może ~~> być wciśnięty (A=1)
~S~~>A=~S*A=0
Niemożliwe jest (=0) zdarzenie: żarówka nie świeci (~S=1) i przycisk A jest wciśnięty (A=1)
Doskonale to widać na schemacie S1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 19:00, 17 Sty 2021    Temat postu:

17-01-2021
Wywalone bo to samo można napisać prościej
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-06,17779.html#564441

10.2 Definicja implikacji odwrotnej p|~>q


Spis treści
10.2 Fizyczna realizacja implikacji odwrotnej A|~>S 1
10.2.1 Fizyczna realizacja operatora implikacji odwrotnej A||~>S 8
10.2.2 Warunek konieczny ~> wyrażony spójnikami „i”(*) i „lub”(+) 12
10.2.3 Operator implikacji odwrotnej A||~>S w I klasie LO 17
10.2.4 Fizyczna realizacja operatora implikacji prostej S||=>A 21


10.2 Fizyczna realizacja implikacji odwrotnej A|~>S

Definicja implikacji odwrotnej p|~>q:[/b]
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - warunek wystarczający => nie jest (=0) spełniony
B1: p~>q =1 - warunek konieczny ~> jest (=1) spełniony
Stąd mamy:
Definicja implikacji odwrotnej p|~>q w równaniu logicznym:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 =1*1 =1

Stąd mamy:
Definicja implikacji odwrotnej p|~>q w związkach warunku wystarczającego => i koniecznego ~>:
Kod:

Związki warunku wystarczającego => i koniecznego ~> w p|~>q:
      AB12:            |     AB34:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5:~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić, iż dany układ spełnia definicję implikacji odwrotnej p|~>q potrzeba ~> i wystarcza => udowodnić fałszywość dowolnego zdania serii A(x) i prawdziwość dowolnego zdania serii B(x)

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji odwrotnej p|~>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Związki warunku wystarczającego => i koniecznego ~> w p|~>q
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
    p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Wyprowadzenie definicji implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+).
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q
stąd mamy:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
p|~>q = p*~q

Warto zapamiętać różnicę:
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Definicja implikacji odwrotnej p|~>q:
p|~>q = p*~q

Wniosek:
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+) wskazuje jedyny prawdziwy kontrprzykład A1’ w tabeli AB12:
A1’: p~~>~q = p*~q =1
Na mocy definicji kontrprzykładu powyższy fakt jest dowodem iż w układzie występuje fałszywy warunek wystarczający => A1.
A1: p=>q =0 - zajście p nie jest (=0) warunkiem wystarczającym => dla zajścia q
cnd

W implikacji odwrotnej p|~>q drugi możliwy warunek wystarczający w układzie AB12 musi być prawdą:
B2: ~p=>~q=1 - zajście ~p jest wystarczające => dla zajścia ~q

Podstawowy schemat układu realizującego implikację odwrotną A|~>S w zdarzeniach jest następujący.
Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: p|~>q = A|~>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S2, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S2, tylko nie mają do niego dostępu (zmienna wolna).
Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S2 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji odwrotnej A|~>S
Warunkiem koniecznym, aby układ S2 był fizyczną, minimalną realizacją implikacji odwrotnej A|~>S jest przyjęcie punktu odniesienia:
p|~>q = A|~>S

Na początek musimy udowodnić, iż rzeczywiście układ S2 jest fizyczną realizacją implikacji odwrotnej A|~>S.

Fizyczna realizacja implikacji odwrotnej A|~>S w zdarzeniach:
A1B1:
Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla zaświecenia się żarówki S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla zaświecenia się żarówki S
stąd:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1 =1*1=1

Dowodzimy prawdziwości warunku koniecznego ~> B1:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Wciśnięcie przycisku A jest warunkiem koniecznym ~> dla zaświecenia się żarówki S, koniecznym dlatego, że zmienna wolna W do której nie mamy dostępu musi być ustawiona na W=1.
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem koniecznym ~> świecenia się żarówki S (S=1), bo jak przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1).
Prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S =1
stąd:
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to na 100% => żarówka nie świeci się (~S=1)
~A=>~S =1
Warunek wystarczający => jest spełniony (=1) bo przycisk A i zmienna wolna W są połączone szeregowo.
cnd

Dowodzimy fałszywości warunku wystarczającego => A1 między tymi samymi punktami i w tym samym kierunku co zdania B1.
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =0
Wciśnięcie przycisku A nie jest (=0) warunkiem wystarczającym => dla świecenia się żarówki S.
Nie zawsze gdy wciśniemy przycisk A (A=1), zaświeci się żarówka S (S=1), bowiem wszystko tu zależy od zmiennej wolnej W która przyjmuje losowe wartości logiczne poza świadomością człowieka.
Wniosek:
Układ S2 to fizyczna realizacja implikacji odwrotnej A|~>S:
A1B1:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A|~>S = ~(A1: A=>S)*(B1: A~>S) = ~(0)*1 =1*1 =1

Dopiero po udowodnieniu iż układ S2 jest fizyczną realizacją implikacji odwrotnej A|~>S, co wyżej się stało, możemy skorzystać z gotowego szablonu implikacji odwrotnej A|~>S wyrażonego spójnikami warunku wystarczającego => i koniecznego ~>.
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q dla punktu odniesienia:
p|~>q = A|~>S
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A:  1: A=>S  =0 = 2:~A~>~S=0     [=] 3: S~>A  =0 = 4:~S=>~A =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
A’: 1: A~~>~S=1 =                [=]             = 4:~S~~>A =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B:  1: A~>S  =1 = 2:~A=>~S=1     [=] 3: S=>A  =1 = 4:~S~>~A =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
B’:             = 2:~A~~>S=0     [=] 3: S~~>~A=0
---------------------------------------------------------------
    p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
    A|~>S=A*~S  = ~A|=>~S=A*~S   [=]  S|=>A=~S*A = ~S|~>~A=~S*A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli AB12 zachodzi:
I Prawo Kubusia:
A1: A=>S = A2: ~A~>~S =0
##
II Prawo Kubusia:
B1: A~>S = B2: ~A=>~S =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Z kolumny A1B1 odczytujemy:

Definicja implikacji odwrotnej A|~>S w logice dodatniej (bo S):
A1B1:
Implikacja odwrotna A|~>S w logice dodatniej (bo S) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: A=>S =0 - wciśnięcie przycisku A (A=1) nie jest (=0) wystarczające => dla nie świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest (=1) konieczne ~> dla świecenia S (S=1)
Stąd mamy:
Definicja implikacji odwrotnej A|~>S w równaniu logicznym:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 =1*1 =1

Z kolumny A2B2 odczytujemy:

Definicja implikacji prostej ~A|=>~S w logice ujemnej (bo ~S):
A2B2:
Implikacja prosta ~A|=>~S w logice ujemnej (bo ~S) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~A~>~S =0 - nie wciśnięcie A nie jest (=0) warunkiem koniecznym ~> dla nie świecenia żarówki S
B2: ~A=>~S =1 - nie wciśnięcie A jest (=1) warunkiem wystarczającym => nie dla świecenia żarówki S
Stąd mamy:
Definicja implikacji prostej ~A=>~S w równaniu logicznym:
~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) =~(0)*1 =1*1 =1

Matematycznie zachodzi tożsamość logiczna:
A|~>S = ~A|=>~S
Dowód:
Prawa Kubusia:
A1: A=>S = A2: ~A~>~S
B1: A~>S = B2: ~A=>~S
stąd:
A|~>S = ~(A1: A=>S)*(B1: A~>S) = ~(A2: ~A~>~S)*(B2: ~A=>~S) = ~A|=>~S
cnd

Dowód matematycznie tożsamy.
Przejdźmy na zapisy formalne (ogólne) podstawiając:
p=A
q=S
stąd mamy:
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q
stąd mamy:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
oraz:
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
Stąd mamy:
p|~>q = ~p|=>~q
cnd

Definicja tożsamości logicznej „=”:
A|~>S = ~A|=>~S
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wniosek:
Zachodzi tożsamość matematyczna pojęć:
Tożsamość logiczna „=” to spójnik „wtedy i tylko wtedy” <=> i odwrotnie.

W AK możemy używać obu znaczków „=” i <=> wymiennie co poprawia czytelność zapisów.

Podstawa matematyczna do wymiennego używania znaczków „=” i <=>:
Każda tożsamość matematyczna „=” spełnia definicję równoważności <=> i odwrotnie.

Dowód na przykładzie:
2=2 - tożsamość z matematyki klasycznej
Definicja podstawowa równoważności <=>:
p<=>q = (A1: p=>q)*(A2: p~>q) =1*1 =1
Po podstawieniu:
p=2
q=2
mamy:
2<=>2 = (A1: 2=>2)*(B1: 2~>2)=1*1 =1
bo:
A1: 2=>2 =1 - każde pojęcie jest podzbiorem => siebie samego
B1: 2~>2 =1 - każde pojęcie jest nadzbiorem ~> siebie samego
cnd

Pojęcia A i ~A są rozłączne i uzupełniają się wzajemnie do dziedziny D:
A+~A =1 =D - brak wciśnięcia A (~A=1) jest uzupełnieniem do dziedziny dla wciśniętego A (A=1)
Definicja dziedziny dla przycisku A:
Przycisk A może być wyłącznie wciśnięty (A=1) albo nie wciśnięty (~A=1)
Trzeciej możliwości brak (tertium non datur)
A*~A=[] =0 - zdarzenia A i ~A są rozłączne
Nie jest możliwe (=0) aby przyciska A był jednocześnie wciśnięty (A=1) i nie wciśnięty (~A=1)

Przycisk A może być tylko i wyłącznie wciśnięty (A=1) albo($) nie wciśnięty (~A=1).
Dowód:
Definicja spójnika „albo”($) wyrażona spójnikami „i”(*) i „lub”(+):
p$q = p*~q + ~p*q
Po podstawieniu:
p=A
q=~A
mamy:
A$~A = A*~(~A) + ~(A)*~A = A+~A =1
cnd

Oczywiście równoważność p<=>q definiująca tożsamość pojęć p=q musi być tu fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Po podstawieniu:
p=A
q=~A
mamy:
A<=>~A = A*(~A) + ~(A)*~(~A) = A*~A + ~A*A = []+[] =0
cnd


10.2.1 Fizyczna realizacja operatora implikacji odwrotnej A||~>S

Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: p|~>q = A|~>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A


Fakt iż schemat S2 jest fizyczną realizacją implikacji odwrotnej A|~>S udowodniliśmy wyżej.
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~> w p|~>q
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A:  1: A=>S  =0 = 2:~A~>~S=0     [=] 3: S~>A  =0 = 4:~S=>~A =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
A’: 1: A~~>~S=1 =                [=]             = 4:~S~~>A =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B:  1: A~>S  =1 = 2:~A=>~S=1     [=] 3: S=>A  =1 = 4:~S~>~A =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
B’:             = 2:~A~~>S=0     [=] 3: S~~>~A=0
---------------------------------------------------------------
    p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
    A|~>S=A*~S  = ~A|=>~S=A*~S   [=]  S|=>A=~S*A = ~S|~>~A=~S*A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja operatora implikacji odwrotnej A||~>S w logice dodatniej (bo S):
Operator implikacji odwrotnej A||~>S to odpowiedź w spójniku implikacji odwrotnej A|~>S i implikacji prostej ~A|=>~S na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź mamy w kolumnie A1B1:
Implikacja odwrotna A|~>S w logice dodatniej (bo S)
Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1B1:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S (bo może być W=0)
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S (bo dodatkowo musi być W=1)
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 =1*1 =1
Uwaga:
Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’:
A1’: A~~>~S=A*~S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A=1) i nie świeci żarówka S (~S=1)
gdy zmienna wolna W ustawiona jest na W=0

Analiza w zdaniach warunkowych „Jeśli p to q”:
1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli przycisk A będzie wciśnięty to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’.
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Wciśnięcie przycisku A jest konieczne ~> dla zaświecenia się żarówki S, konieczne dlatego, że w układzie występuje szeregowy przycisk W nad którym nie mamy kontroli (zmienna wolna), który musi być ustawiony w pozycję W=1 aby żarówka świeciła się przy wciśniętym przycisku A.
Wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1), bo jak klawisz A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S
LUB
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1: A=>S =0 musi być prawdą
A1’.
Jeśli klawisz A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =1 - możliwe jest zdarzenie (=1): przycisk A wciśnięty (A=1) i żarówka nie świeci (~S=1)
gdy zmienna wolna W ustawiona jest na W=0

Komentarz:
I.
Warunek konieczny A~>S to zdanie B1

II.
Kolumna A1B1:
Implikacja odwrotna A|~>S to:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 =1*1 =1
Uwaga:
Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’:
A1’: A~~>~S=A*~S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A=1) i nie świeci żarówka S (~S=1)

III.
Operator implikacji odwrotnej A||~>S w logice dodatniej (bo S) to odpowiedź na dwa pytania 1 i 2:
1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź w kolumnie A1B1:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
stąd:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 =1*1 =1
Uwaga:
Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’:
A1’: A~~>~S=A*~S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A=1) i nie świeci żarówka S (~S=1)

2.
Kolumna A2B2:

Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia się żarówki S
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia się żarówki S
Stąd:
~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) = ~(0)*1 =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’:
B2’: ~A~~>S=~A*S=0 - nie jest możliwe (=0): przycisk A nie wciśnięty (~A=1) i żarówka świeci (S=1)

Definicja operatora implikacji prostej ~A|=>~S w logice ujemnej (bo ~S):
Operator implikacji prostej ~A||=>~S w logice ujemnej (bo ~S) to odpowiedź w spójniku implikacji prostej ~A|=>~S i odwrotnej A|~>S na dwa pytania 2 i 1:

2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Kolumna A2B2:
Implikacja prosta ~A|=>~S w logice ujemnej (bo ~S):
Implikacja prosta ~A|=>~S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2B2:
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia się żarówki S
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia się żarówki S
~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) = ~(0)*1 =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’:
B2’: ~A~~>S=~A*S=0 - nie jest możliwe (=0): przycisk A nie wciśnięty (~A=1) i żarówka świeci (S=1)

Analiza w zdaniach warunkowych „Jeśli p to q”:
2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Odpowiedź w kolumnie A2B2:
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1
Oczywistość bo przycisk A i zmienna wolna W połączone są szeregowo.
Nie wciśnięcie przycisku A jest warunkiem wystarczającym => dla nie świecenia się żarówki S, bo zawsze gdy przycisk A nie jest wciśnięty, żarówka nie świeci się (~S=1) - wynika to z praw fizyki, a nie z nieskończonej ilości wciskania przycisku A … jak to robią ziemscy matematycy.
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2:~p=>~q=1 musi być fałszem
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)

Komentarz:
I.
Warunek wystarczający ~A=>~S to zdanie B2

II.
Implikacja prosta ~A|=>~S w logice ujemnej (bo ~S) to:
A2B2:
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?
Odpowiedź w kolumnie A2B2 definiującej implikację prostą ~A|=>~S:
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia się żarówki S
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia się żarówki S
stąd:
~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) = ~(0)*1 =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’:
B2’: ~A~~>S=~A*S=0 - nie jest możliwe (=0): przycisk A nie wciśnięty (~A=1) i żarówka świeci (S=1)

III.
Operator implikacji prostej ~A||=>~S w logice ujemnej (bo ~S) to odpowiedź na dwa pytania 2 i 1
2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Odpowiedź w kolumnie A2B2 definiującej implikację prostą ~A|=>~S
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia się żarówki S
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia żarówki S
stąd:
~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) = ~(0)*1 =1*1 =1
Uwaga:
Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’:
B2’: ~A~~>S=~A*S=0 - nie jest możliwe (=0): przycisk A nie wciśnięty (~A=1) i żarówka świeci (S=1)

1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź w kolumnie A1B1 definiującej implikację odwrotną A|~>S:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
stąd:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 =1*1 =1
Uwaga:
Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’:
A1’: A~~>~S=A*~S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A=1) i nie świeci żarówka S (~S=1)

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

T4
            Y ~Y   Analiza w logice dodatniej dla Y:
B1:  A~> S =1  0 - wciśnięcie A jest konieczne ~> dla świecenia S
                   konieczne bo dodatkowo musi być W=1 (zmienna wolna)
A1’: A~~>~S=1  0 - możliwe jest (=1): wciśnięty A i nie świeci S
                   możliwe gdy zmienna wolna W=0
B2: ~A=>~S =1  0 - nie wciśnięcie A (~A=1) jest wystarczające =>
                   dla nie świecenia S (~S=1).
                   stan zmiennej wolnej W jest bez znaczenia W=x, x={0,1}
B2’:~A~~>S =0  1 - niemożliwe jest (=0): nie wciśnięty A (~A=1) i świeci S
                   stan zmiennej wolnej W jest bez znaczenia W=x, x={0,1}


Podsumowanie:
Zauważmy że:
1.
Jeśli przycisk A jest wciśnięty (A=1) to mamy najzwyklejsze „rzucanie monetę” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’.
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1 - wciśnięcie przycisku A (A=1) jest konieczne ~> dla świecenia się żarówki S (S=1)
Konieczne, bo dodatkowo musi być W=1
LUB
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A wciśnięty (A=1) i żarówka nie świeci się (~S=1)
gdy dodatkowo zmienna wolna W ustawiona jest na W=0.

Gwarancja matematyczna => w implikacji odwrotnej A|~>S jest po stronie ~A (~A=1):
2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to mamy gwarancję matematyczną => nie świecenia się żarówki S (~S=1) - mówi o tym zdanie B2.
B2.
Jeśli przycisk A jest nie wciśnięty (~A=1) to na 100% => żarówka nie świeci się (~S=1)
~A=>~S =1 - nie wciśnięcie A (~A=1) jest wystarczające => dla nie świecenia się żarówki S (~S=1)
bo przycisk A i zmienna wolna W połączone są szeregowo.

10.2.2 Warunek konieczny ~> wyrażony spójnikami „i”(*) i „lub”(+)

Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: p|~>q = A|~>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Fakt iż schemat S2 jest fizyczną realizacją implikacji odwrotnej A|~>S udowodniliśmy wyżej.
Warunek konieczny ~> wyrażony spójnikami „i”(*) i „lub”(+) opisany jest równaniem logicznym:
Y = (A~>S) = A+~S

Definicja operatora OR(|+):
Dla funkcji logicznej typu Y=p+q operator OR(|+) to odpowiedź na dwa pytania:
1.
Kiedy zajdzie Y (Y=1)
2.
Kidy zajdzie ~Y (~Y=1)

W przełożeniu na nasz przykład odpowiada to pytaniom:
1.
Które zdarzenia są możliwe (Y=1)?
2.
Które zdarzenia nie są możliwe (~Y=1)?

Znaczenie symboli:
Y=1 - zdarzenie możliwe
Czytamy:
Prawdą jest (=1) że możliwe jest zdarzenie Y (Y=1)
~Y=1 - zdarzenie niemożliwe
Czytamy:
Prawdą jest (=1) że nie jest możliwe (~) zdarzenie Y (~Y=1)

Zajmijmy się naszym przykładem:
1’
Y = (A~>S) = A+~S
W tym przypadku najprostsze podejście do problemu to na początek rozstrzygnięcie które zdarzenia nie są możliwe (~Y=1).
Negujemy w tym celu dwustronnie równanie 1’:
~Y = ~(A~>S) = ~(A+~S) = ~A*S - na mocy prawa De Morgana

Stąd mamy odpowiedź na pytanie 2:
2.
Które zdarzenia nie są możliwe (~Y=1)?

D: ~Y=~A*S
co w logice jedynek oznacza:
D: ~Y=1 <=> ~A=1 i S=1
Czytamy:
Zdarzenie niemożliwe (~Y=1) to:
Przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
~Y=~A*S =1
Doskonale to widać na schemacie S2.

Prawo Prosiaczka:
(~Y=1)= (Y=0)
stąd zapis tożsamy:
D: Y=0 <=> ~A=1 i S=1
Czytamy:
Fałszem jest (=0), że możliwe jest zdarzenie Y (Y=0):
Przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Y=0 <=> ~A=1 i S=1
Zauważmy, ze tego zapisu nie da się zapisać w domyślnym równaniu algebry Boole’a bowiem w spójniku „lub”(+) oraz w funkcji alternatywno-koniunkcyjnej domyślna wartość logiczna wszystkich zmiennych binarnych jest równa 1.
Dopiero po skorzystaniu z prawa Prosiaczka:
(Y=0)=(~Y=1)
możemy zapisać:
D: ~Y=~A*S
co w logice jedynek oznacza:
D: ~Y=1 <=> ~A=1 i S=1

Odpowiedzmy teraz na pytanie 1.
1.
Które zdarzenia są możliwe (Y=1)?

Oczywistym jest, że wszelkie zdarzenia nie uwzględnione w równaniu 2 będą prawdziwe.
Stąd mamy rozłączne zdarzenia możliwe:
Y = A: A*S + B: A*~S + C:~A*~S
co w logice jedynek oznacza:
Y=1 <=> A: A=1 i S=1 lub B: A=1 i ~S=1 lub C: ~A=1 i ~S=1

Czytamy:
Zdarzenia możliwe (Y=1) to:
A: Ya = A*S=1*1 =1 - możliwe jest zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka świeci (S=1)
lub
B: Yb = A*~S=1*1=1 - możliwe jest zdarzenie: A jest wciśnięty (A=1) i żarówka nie świeci (~S=1)
lub
C: Yc = ~A*~S=1*1=1 - możliwe jest zdarzenie: A nie jest wciśnięty (~A=1) i żarówka nie świeci (~S=1)
Doskonale to widać na schemacie S1

Wszystkie zdarzenia możliwe to suma logiczna funkcji cząstkowych Ya, Yb i Yc:
Y = Ya+Yb+Yc
po rozwinięciu mamy:
Y = (A~>S) = A: A*S + B: A*~S + C:~A*~S

Pozostaje nam udowodnić tożsamość logiczną:
Y = A: A*S + B: A*~S + C:~A*~S = A+~S

Przejdźmy na zapisy formalne (ogólne) podstawiając:
p=A
q=S
stąd mamy:
Y = (p~>q) = p*q + p*~q + ~p*~q
Minimalizujemy:
Y = p*(q+~q) + ~p*~q
Y = p+(~p*~q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = ~p*(p+q) = ~p*p + ~p*q
~Y = ~p*q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
Y = p+~q

Po odtworzeniu zmiennych aktualnych (z przykładu) mamy:
Y = (A~>S) = A: A*S + B: A*~S + C:~A*~S = A+~S
cnd

Oczywistym jest ze zdarzenia możliwe A, B i C są rozłączne matematycznie i fizycznie.
Dowód matematyczny:
A*B = (A*S)*(A*~S) =[] =0
A*C = (A*S)*(~A*~S) =[] =0
B*C = (A*~S)*(~A*~S) = [] =0
cnd

Otwórzmy na zakończenie tabelę zero-jedynkową warunku koniecznego ~>.
Zapiszmy w tym celu naszą analizę w postaci tabeli prawdy:
Kod:

T1
Analiza        |Co w logice
symboliczna S2 |jedynek oznacza
         Y  ~Y |               Y
A: A* S =1  =0 |( A=1)*( S=1) =1
B: A*~S =1  =0 |( A=1)*(~S=1) =1
C:~A*~S =1  =0 |(~A=1)*(~S=1) =1
D:~A* S =0  =1 |(~A=1)*( S=1) =0
   a  b  c   d    e      f     g

Przejdźmy z powyższą tabelą na zapis formalny (ogólny) podstawiając:
p=A
q=S
stąd mamy:
Kod:

T1
Analiza        |Co w logice
symboliczna S2 |jedynek oznacza
         Y  ~Y |               Y
A: p* q =1  =0 |( p=1)*( q=1) =1
B: p*~q =1  =0 |( p=1)*(~q=1) =1
C:~p*~q =1  =0 |(~p=1)*(~q=1) =1
D:~p* q =0  =1 |(~p=1)*( q=1) =0
   a  b  c   d    e      f     g


Mamy nasze równanie warunku koniecznego ~>:
Y = (p~>q)=p+~q
W warunku koniecznym ~>:
p~>q
mamy do czynienia ze zmiennymi niezanegowanymi

Wniosek:
Aby otrzymać tabelę zero-jedynkową warunku koniecznego ~> musimy wszystkie zmienne w tabeli T1 sprowadzić do postaci niezanegowanej.
To jest zadanie trywialne dzięki prawu Prosiaczka które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Prawo Prosiaczka:
(~p=1)=(p=0)

Stąd mamy:
Kod:

T1
Analiza        |Co w logice      |Punkt odniesienia |Tabela matematycznie
symboliczna S2 |jedynek oznacza  | p~>q             |tożsama
         Y  ~Y |               Y |              Y   | p  q p~>q
A: p* q =1  =0 |( p=1)*( q=1) =1 |( p=1)*( q=1)=1   | 1~>1  =1
B: p*~q =1  =0 |( p=1)*(~q=1) =1 |( p=1)*( q=0)=1   | 1~>0  =1
C:~p*~q =1  =0 |(~p=1)*(~q=1) =1 |( p=0)*( q=0)=1   | 0~>0  =1
D:~p* q =0  =1 |(~p=1)*( q=1) =0 |( p=0)*( q=1)=0   | 0~>1  =0
   a  b  c   d    e      f     g    h      i    j     1  2   3

Tabela 123 to zero-jedynkowa definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Podsumowanie:
Zauważmy, ze po przejściu z definicją warunku koniecznego ~> do spójników „i”(*) i „lub”(+) o żadnym „rzucaniu monetą” w sensie „na dwoje babka wróżyła” mowy być nie może bowiem na mocy definicji operatora OR(|+) rozstrzygany tu tylko i wyłącznie dwie sprawy:
1.
Które zdarzenie są możliwe (Y)
Y = p+~q
2.
Które zdarzenie nie są możliwe (~Y)
~Y=~p*q

Między funkcjami logicznymi Y i ~Y zachodzi definicja spójnika „albo”($).

Dowód:
Definicja spójnika „albo”($) wyrażonego spójnikami „i”(*) i „lub”(+):
p$q = p*~q + ~p*q

Nasz przykład:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y = Y+~Y =1
cnd

Oczywistym jest, ze relacja równoważności p<=>q definiująca tożsamość pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Nasz przykład:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0+0 =0

Dlaczego ziemscy matematycy nie widzą „rzucania monetą” w logice matematycznej?
Odpowiedź:
Bo zawsze korzystają z prawa przejścia z warunku koniecznego p~>q do spójników „lub”(+) i „i”(*):
p~>q = p+~q
gdzie o żadnym „rzucaniu monetą” mowy być nie może czego dowód mamy w niniejszym podsumowaniu.

10.2.3 Operator implikacji odwrotnej A||~>S w I klasie LO

Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: p|~>q = A|~>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A


Fakt iż schemat S2 jest fizyczną realizacją implikacji odwrotnej A|~>S udowodniliśmy wyżej.
Udajmy się na lekcję fizyki w I klasie LO (póki co w 100-milowym lesie).

Pan od fizyki:
A.
Czy może się zdarzyć, że przycisk A jest wciśnięty (A=1) i żarówka świeci się (S=1)?
Jaś:
TAK
Ya = A~~>S = A*S =1
Możliwe jest (=1) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna W=1.

Pan od fizyki:
B.
Czy może się zdarzyć, że przycisk A jest wciśnięty (S=1) i żarówka nie świeci się (~S=1)?
Jaś:
TAK
Yb = A~~>~S = A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Gdy zmienna wolna W=0.

Pan od fizyki:
C.
Czy może się zdarzyć, że przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)?
Jaś:
TAK
Yc = ~A~~>~S = ~A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}

Pan od fizyki:
D.
Czy może się zdarzyć, że przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)?
Jaś:
NIE
Yd = ~A~~>S = ~A*S =0
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}

Powyższe odpowiedzi na bazie schematu S1 udzieli każdy uczeń 8 klasy szkoły podstawowej. Zauważmy, że przy udzielaniu poprawnych odpowiedzi TAK/NIE definicja zmiennej wolnej sama nam wyskoczyła.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
Nasz przykład:
W=x - zmienna wolna W która może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Stąd mamy też:
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Nasz przykład:
A=x - zmienna związana która może być ustawiana na 0 albo 1 przez człowieka
Zmienna związana A jest punktem odniesienia w naszej analizie schematu S1, stąd możemy ja ustawiać na 0 albo 1.

Zapiszmy powyższą analizę w tabeli prawdy:
Kod:

T1
          Y   Analiza dla Y:
A: A~~> S=1 - możliwe jest zdarzenie: wciśnięty A (A=1) i świeci S (S=1)
B: A~~>~S=1 - możliwe jest (=1) zdarzenie: wciśnięty A i nie świeci S (~S=
C:~A~~>~S=1 - możliwe jest (=1) zdarzenie: nie wciśnięty A i nie świeci S
D:~A~~> S=0 - niemożliwe jest (=0) zdarzenie: nie wciśnięty A i świeci S

Analiza matematyczna T1 w oparciu o definicję kontrprzykładu i prawa logiki matematycznej:
Część I
1.
Fałszywość kontrprzykładu D:
D:~A~~> S=0 - niemożliwe jest (=0) zdarzenie: nie wciśnięty A i świeci S
Wymusza prawdziwość warunku wystarczającego => C:
C: ~A=>~S =1 - brak wciśnięcia A (~A=1) jest warunkiem wystarczającym => dla nie świecenia S (~S=1)
Stan zmiennej wonnej W jest bez znaczenia. W=x gdzie x={0,1}
2.
Prawo Kubusia:
C: ~A=>~S = A: A~>S =1
stąd:
A: A~>S =1 - wciśnięcie A (A=1) jest warunkiem koniecznym ~> dla zaświecenia się żarówki S (S=1)
bo jak A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
A: A~>S = ~A=>~S =1
3.
Z prawdziwości warunku wystarczającego C wynika fałszywość kontrprzykładu D:
D: ~A~~>S =0 - niemożliwe jest zdarzenie: nie wciśnięty A (~A=1) i świeci S (S=1)

Nanieśmy to do tabeli prawdy T1:
Kod:

T2
          Y   Analiza dla Y:
A: A~>  S=1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1)
B: A~~>~S=1 - możliwe jest zdarzenie: wciśnięty A i nie świeci S (~S)
C:~A=>~S =1 - nie wciśnięcie A jest wystarczające dla nie świecenia S
D:~A~~> S=0 - niemożliwe jest zdarzenie: nie wciśnięty A i świeci S

Analiza matematyczna T1 w oparciu o definicję kontrprzykładu i prawa logiki matematycznej:
Część II
4.
Prawdziwy kontrprzykład B:
B: A~~>~S=1
Wymusza fałszywy warunek wystarczający AW:
AW: A=>S =0 - wciśnięcie A nie jest (=1) warunkiem wystarczającym => dla świecenia się żarówki S
Gdy zmienna wolna W=0 to S=0
5.
Prawo Kubusia:
AW: A=>S = CW: ~A~>~S =0
stąd:
Fałszywy warunek wystarczający AW wymusza fałszywy warunek konieczny CW:
CW: ~A~>~S=0

Nanieśmy to do tabeli T2:
Kod:

T2
          Y |
A: A~>  S=1 | AW: A=>S =0
B: A~~>~S=1 |
C:~A=>~S =1 | CW:~A~>~S 0
D:~A~~> S=0 |
            |Uwaga:
            |Fałszywy warunek wystarczający AW wymusza prawdziwość
            |kontrprzykładu WA’:
            |AW’: A~~>~S=A*~S=1
            |Możliwe jest: wciśnięty A (A=1) i nie świeci S (~S=1)


Operator implikacji odwrotnej A||~>S to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli przycisk A będzie wciśnięty (A=1)?

Definicja implikacji odwrotnej A|~>S w logice dodatniej (bo S):
Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku:
A: A~>S =1 - wciśnięcie A (A=1) jest (=1) konieczne ~> dla świecenia S (S=1)
AW: A=>S=0 - wciśnięcie A (A=1) nie jest (=0) wystarczające => dla świecenia S (S=1)
A|~>S = (A: A~>S)*~(AW: A=>S) =1*~(0)=1*1=1
Stąd mamy analizę implikacji odwrotnej A|~>S w zdaniach warunkowych „Jeśli p to q”.
1.
Co może się wydarzyć, jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź:
Jeśli przycisk A będzie wciśnięty to mamy najzwyklejsze „rzucane monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A i AW’
A.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Wciśnięcie przycisku A jest warunkiem koniecznym ~> dla świecenia się żarówki S
Koniecznym ~> dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1) bo jak przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
A: A~>S = C: ~A=>~S =1
lub
AW’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się nie świecić (~S=1)
A~~>~S = A*~S =1 - możliwe jest: przycisk a wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Gdy zmienna wolna W=0

2.
Co może się wydarzyć, jeśli przycisk A nie będzie wciśnięty (~A=1)?

Definicja implikacji prostej ~A|=>~S w logice ujemnej (bo ~S):
Implikacja prosta ~A|=>~S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku:
C: ~A=>~S=1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia S (~S=1)
CW: ~A~>~S=0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia S (~S=1)
Stąd:
~A|=>~S = (C:~A=>~S)*~(CW: ~A~>~S) = 1*~(0)=1*1=1
Stąd mamy analizę implikacji prostej ~A|=>~S w zdaniach warunkowych „Jeśli p to q”.
2.
Co może się wydarzyć, jeśli przycisk A nie będzie wciśnięty (~A=1)?

Odpowiedź:
Jeśli przycisk A nie będzie wciśnięty to mamy gwarancję matematyczną =>, iż żarówka nie będzie się świecić - mówi o tym zdanie C.
C.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1 - nie wciśnięcie A (~A=1) jest wystarczające => dla nie świecenia S (~S=1)
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}
Prawdziwy warunek wystarczający C wymusza fałszywość kontrprzykładu D:
D.
C.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Nie jest możliwe zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Stan zmiennej wolnej W jest bez znaczenia. W=x gdzie x={0,1}

Podsumowanie:
Doskonale widać jak łatwo przejść z opisu schematu S2 w zdarzeniach możliwych ~~> (tabela T1) do wygenerowania pełnej definicji operatora implikacji odwrotnej A||~>S opisanego analizą ciut wyżej.

10.2.4 Fizyczna realizacja operatora implikacji prostej S||=>A

Przypomnijmy sobie omówiony wyżej układ implikacji odwrotnej A|~>S:
Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: p|~>q = A|~>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Tabela prawdy dla układu S1 z punktem odniesienia ustawionym na przycisku A jest następująca.
Kod:

T3
Związki warunku wystarczającego => i koniecznego ~> w p|~>q
       AB12:                      |     AB34:
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A:  1: A=>S  =0 = 2:~A~>~S=0     [=] 3: S~>A  =0 = 4:~S=>~A =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
A’: 1: A~~>~S=1 =                [=]             = 4:~S~~>A =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B:  1: A~>S  =1 = 2:~A=>~S=1     [=] 3: S=>A  =1 = 4:~S~>~A =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
B’:             = 2:~A~~>S=0     [=] 3: S~~>~A=0
---------------------------------------------------------------
    p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
    A|~>S=A*~S  = ~A|=>~S=A*~S   [=]  S|=>A=~S*A = ~S|~>~A=~S*A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: A~~>~S=A*~S=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~A~~>S =~A*S=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Spójrzmy na omówiony wyżej schemat S2 z punktu odniesienia żarówki S.
Kod:

S2_AB34 Schemat 2_AB34
Fizyczny układ minimalny implikacji prostej S|=>A w zdarzeniach:
S|=>A=~(A3: S~>A)*(B3: S=>A)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: q|=>p = S|=>A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej S|=>A jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A


Implikacja prosta S||=>A to odpowiedź w spójnikach implikacji prostej S|=>A i odwrotnej ~S|~>~A na dwa pytania 3 i 4.

3.
Jeśli żarówka świeci się (S=1) to w jakim stanie może być przycisk A?

Kolumna A3B3
Definicja implikacji prostej S|=>A w logice dodatniej (bo A):
Implikacja prosta S|=>A to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
Z kolumny A3B3 odczytujemy:
A3: S~>A =0 - świecenie S (S=1) nie jest (=0) konieczne ~> dla wnioskowania o wciśniętym A (A=1)
bo żarówka może nie świecić, a przycisk A może być wciśnięty (gdy W=0)
B3: S=>A =1 - świecenie S (S=1) jest (=1) wystarczające => dla wnioskowania o wciśniętym A (A=1)
bo zawsze gdy żarówka świeci (S=1) przycisk A jest wciśnięty (A=1).
Wynika to z połączenia szeregowego przycisków A i W.
stąd mamy implikację prostą S|=>A opisaną równaniem logicznym:
S|=>A=~(A3: S~>A)*(B3: S=>A)=~(0)*1=1*1=1
Uwaga:
Prawdziwość warunku wystarczającego B3 wymusza fałszywość kontrprzykładu B3’:
B3’: S~~>~A=S*~A =0 - niemożliwe jest (=0) zdarzenie:
żarówka S świeci się (S=1) i przycisk A nie jest wciśnięty (~A)
bo przyciski A i W połączone są szeregowo.

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”.
Kolumna A3B3 daje odpowiedź na pytanie 3.
3.
Jeśli żarówka świeci się (S=1) to w jakim stanie może być przycisk A?

Odpowiedź:
Jeśli żarówka świeci się to mamy gwarancję matematyczną => iż przycisk A jest wciśnięty - mówi o tym zdanie B3.
B3.
Jeśli żarówka świeci się (S=1) to na 100% => przycisk A jest wciśnięty (A=1)
S=>A =1
Świecenie się żarówki (S=1) jest (=1) warunkiem wystarczającym => dla wnioskowania o wciśniętym przycisku A, bo przyciski A i W połączone są szeregowo.
Prawdziwość warunku wystarczającego B3 wymusza fałszywość kontrprzykładu B3’:
B3’.
Jeśli żarówka świeci się (S=1) to przycisk A może ~> nie być wciśnięty (~A=1)
S~~>~A = S*~A =0
Niemożliwe jest (=0) zdarzenie: żarówka świeci się (S=1) i przycisk A nie jest wciśnięty (~A=1)
bo przyciski A i W połączone są szeregowo.

4.
Jeśli żarówka nie świeci się (~S=1) to w jakim stanie może być przycisk A?

Kolumna A4B4.
Definicja implikacji odwrotnej ~S|~>~A w logice ujemnej (bo ~A):
Implikacja odwrotna ~S|~>~A to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
Z kolumny A4B4 odczytujemy:
A4: ~S=>~A =0 - brak świecenia żarówki S (~S) nie jest (=0) warunkiem wystarczającym =>
dla wnioskowania o nie wciśniętym przycisku A (~A)
bo żarówka może nie świecić (~S=1), a przycisk A może być wciśnięty (gdy W=0)
B4: ~S~>~A =1 - brak świecenia żarówki (~S=1) jest (=1) warunkiem koniecznym ~>
dla wnioskowania o nie wciśniętym przycisku A (~A=1)
Bo jak żarówka świeci (S=1) to na 100% => przycisk A jest wciśnięty (A=1)
Prawo Kubusia samo nam tu wyskoczyło:
B4: ~S~>~A = B3: S=>A
Stąd mamy definicję implikacji odwrotnej ~S|~>~A opisaną równaniem logicznym:
~S|~>~A = ~(A4: ~S=>~A)*(B4: ~S~>~A) =~(0)*1=1*1=1
Uwaga:
Fałszywość warunku wystarczającego A4 wymusza prawdziwość kontrprzykładu A4’:
A4’: ~S~~>A=~S*A=1 - możliwe jest (=1) zdarzenie: żarówka nie świeci (~S=1) i wciśnięty A (A=1)
gdy W=0

Kolumna A4B4 daje odpowiedź na pytanie:
4.
Jeśli żarówka nie świeci się (~S=1) to w jakim stanie może być przycisk A?

Odpowiedź:
Jeśli żarówka nie świeci się to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B4 i A4’

Analiza szczegółowa w zdaniach warunkowych „Jeśli p to q”:
B4.
Jeśli żarówka nie świeci się (~S=1) to przycisk A może ~> nie być wciśnięty (~A=1)
~S~>~A=1
brak świecenia żarówki (~S=1) jest (=1) warunkiem koniecznym ~> dla wnioskowania o nie wciśniętym przycisku A (~A=1), bo jak żarówka świeci (S=1) to na 100% => przycisk A jest wciśnięty (A=1)
Prawo Kubusia samo nam tu wyskoczyło:
B4: ~S~>~A = B3: S=>A
LUB
Fałszywość warunku wystarczającego A4 wymusza prawdziwość kontrprzykładu A4’:
A4’.
Jeśli żarówka nie świeci się (~S=1) to przycisk A może ~~> być wciśnięty (A=1)
~S~~>A=~S*A=1
Możliwe jest (=1) zdarzenie: żarówka nie świeci (~S=1) i przycisk A jest wciśnięty (A=1), gdy W=0
Doskonale to widać na schemacie S2
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 8:49, 02 Mar 2021    Temat postu:

Powód:
2021-03-02 - będzie modyfikacja

4.0 Teoria rachunku zbiorów i zdarzeń


Spis treści
4.0 Teoria rachunku zbiorów i zdarzeń 1
4.1 Podstawowe spójniki implikacyjne w zbiorach 1
4.1.1 Definicja kontrprzykładu w zbiorach 2
4.1.2 Prawa Kobry dla zbiorów 2
4.2 Podstawowe spójniki implikacyjne w zdarzeniach 3
4.2.1 Definicja kontrprzykładu w zdarzeniach 4
4.2.2 Prawo Kobry dla zdarzeń 4
4.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 4
4.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 7
4.4 Definicje spójników implikacyjnych 8
4.4.1 Definicja podstawowa implikacji prostej p|=>q 9
4.4.2 Definicja podstawowa implikacji odwrotnej p|~>q 11
4.4.3 Definicja podstawowa równoważności p<=>q 13
4.4.4 Definicja podstawowa chaosu p|~~>q 18



4.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

4.1 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q

I.
Definicja elementu wspólnego ~~> zbiorów:

Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory nieskończone są rozłączne to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

II.
Definicja warunku wystarczającego => w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.1.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

4.1.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem => samego siebie:
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

Zbiór pusty jest zbiorem zewnętrznym w stosunku do dowolnego zbioru niepustego.
Dowód tego faktu znajdziemy w punkcie 3.3

4.2 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.2.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

4.2.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

4.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne A1 i B1:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
Funkcja logiczna p=>q = ~p+q nie jest tożsama z funkcją logiczną p~>q = p+~q
oraz nie jest zaprzeczeniem funkcji logicznej p~>q = p+~q:
B1: ~(p~>q) = ~(p+~q) = ~p*q ## A1: p=>q=~p+q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
cnd

Kod:

T1
Definicja warunku wystarczającego =>
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji
p=>q=~p+q ## p~>q=p+~q ## p+q

Definicja znaczka różne na mocy definicji ## w rachunku zero-jedynkowym:
Dwie kolumny są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

Doskonale to widać w kolumnach wynikowych tabel T1, T2 i T3. Warunek konieczny jaki musi tu być spełniony to identyczna matryca zero-jedynkowa po stronie wejść p i q bowiem wtedy i tylko wtedy możemy wnioskować o tożsamości lub braku tożsamości kolumn zero-jedynkowych. Warunek wspólnej matrycy zero-jedynkowej tabelach T1, T2 i T3 jest spełniony.

Uwaga:
Powyższa definicja znaczka różne na mocy definicji ## jest definicją uproszczoną, w zdecydowanej większości wystarczającą - mogą jednak zajść przypadki których powyższa definicja poprawnie nie definiuje. Pełna definicja znaczka różne na mocy definicji ##, dla wszystkich możliwych przypadków, omówiona jest w punkcie 2.12.

Stąd w rachunku zero-jedynkowym wyprowadzamy następujące związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =0    =0        =0    =0        =0
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =1    =1        =1    =1        =1
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Przy wypełnianiu tabeli zero-jedynkowej w rachunku zero-jedynkowym nie wolno nam zmieniać linii w sygnałach wejściowych p i q, bowiem wtedy i tylko wtedy o tym czy dane prawo zachodzi decyduje tożsamość kolumn wynikowych.
##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q
A: 1  1  0  0  =1    =1        =1    =1        =1
B: 1  0  0  1  =1    =1        =1    =1        =1
C: 0  0  1  1  =1    =1        =1    =1        =1
D: 0  1  1  0  =0    =0        =0    =0        =0
                1     2         3     4         5

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

4.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q


4.4 Definicje spójników implikacyjnych

Definicja spójnika implikacyjnego:
Spójnik implikacyjny, to spójnik definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery spójniki implikacyjne:
p|=>q - implikacja prosta
p|~>q - implikacja odwrotna
p<=>q - równoważność
p|~~>q - chaos

Wszystkie definicje spójników implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

4.4.1 Definicja podstawowa implikacji prostej p|=>q

Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
A1B1:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
Implikacja prosta p|=>q w logice dodatniej (bo q):
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q

Warto zapamiętać różnicę:
Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja implikacji prostej p|=>q:
p|=>q = (A1: p=>q)*~(B1: p~>q) =~p*q
Gdzie:
## - różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z niech nie jest zaprzeczeniem drugiej.

Jak widzimy, funkcje logiczne p=>q i p|=>q spełniają definicję znaczka różne na mocy definicji ##.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład 4.4.1
Zbadaj w skład jakiego spójnika logicznego wchodzi zdanie A1:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
to samo w zapisie formalnym:
p=>q =1
Podzielność dowolnej liczby przez 8 jest (=1) warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
##
Badamy warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku:
B1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% ~> jest podzielna przez 2
P8~>P2 =0
to samo w zapisie formalnym:
p~>q =0
Podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem koniecznym ~> dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
Prawo Kameleona:
Dwa zdanie brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być logicznie tożsame.
Dowód:
Zdania A1 i B1 których prawdziwość/fałszywość rozpoznajemy wyłącznie po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań

Rozwiązanie:
Zdanie A1 jest częścią spójnika implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = ~p*q - zapis formalny
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2)= ~P8*P2 - zapis aktualny
Gdzie:
p=P8
q=P2
Kod:

T2.
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=~p*q - zapis formalny
P8|=>P2=(A1: P8=>P2)*~(B1: P8~>P2)=~P8*P2 - zapis aktualny
Punkt odniesienia:
p=P8
q=P2
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1    [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: P8=>P2  =1 = 2:~P8~>~P2=1    [=] 3: P2~>P8  =1  = 4:~P2=>~P8 =1
       ##            ##              |     ##             ##
B:  1: p~>q    =0 = 2:~p=>~q  =0    [=] 3: q=>p    =0   = 4:~q~>~p  =0
B:  1: P8~>P2  =0 = 2:~P8=>~P2=0    [=] 3: P2=>P8  =0   = 4:~P2~>~P8=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.4.2 Definicja podstawowa implikacji odwrotnej p|~>q

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)= ~(0)*1 =1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
Implikacja odwrotna p|~>q w logice dodatniej (bo q):
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q

Warto zapamiętać różnicę:
Definicja warunku koniecznego p~>q:
p~>q = p+~q
##
Definicja implikacji odwrotnej p|~>q:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = p*~q
Gdzie:
## - różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z niech nie jest zaprzeczeniem drugiej.

Jak widzimy, funkcje logiczne p~>q i p|~>q spełniają definicję znaczka różne na mocy definicji ##.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład 4.4.2
Zbadaj w skład jakiego spójnika logicznego wchodzi zdanie B1:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
to samo w zapisie formalnym:
p=>q =1
Podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~> dla jej podzielności przez 8 bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
##
Badamy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku:
A1.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
to samo w zapisie formalnym:
p~>q =0
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 6 bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Rozwiązanie:
Zdanie B1 jest częścią spójnika implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = p*~q - zapis formalny
A1B1: P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = P2*~P8 - zapis aktualny
Gdzie:
p=P2
q=P8
Kod:

T2.
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=p*~q - zapis formalny
P2|~>P8=~(A1: P2=>P8)*(B1: P2~>P8)=P2*~P8 - zapis aktualny
Punkt odniesienia:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =0 = 2:~p~>~q  =0    [=] 3: q~>p    =0  = 4:~q=>~p   =0
A:  1: P2=>P8  =0 = 2:~P2~>~P8=0    [=] 3: P8~>P2  =0  = 4:~P8=>~P2 =0
       ##            ##              |     ##             ##
B:  1: p~>q    =1 = 2:~p=>~q  =1    [=] 3: q=>p    =1   = 4:~q~>~p  =1
B:  1: P2~>P8  =1 = 2:~P2=>~P8=1    [=] 3: P8=>P2  =1   = 4:~P8~>~P2=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.4.3 Definicja podstawowa równoważności p<=>q

Definicja podstawowa równoważności p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p<=>q = (p=>q)*(p~>q) =1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
RA1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
Równoważność p<=>q w logice dodatniej (bo q):
p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p+~p*~q+q*p+q*~q = p*q+~p*~q
p<=>q = p*q+~p*~q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład 4.4.3
Zbadaj w skład jakiego spójnika logicznego wchodzi twierdzenie Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
to samo w zapisie formalnym
p=>q =1
Twierdzenie proste p=>q Pitagorasa udowodniono wieki temu.
Ten dowód oznacza że:
Bycie trójkątem prostokątnym jest (=1) warunkiem wystarczającym => do tego aby zachodziła w nim suma kwadratów bo zbiór trójkątów prostokątnych jest podzbiorem => zbioru trójkątów w których spełniona jest suma kwadratów.

Badamy twierdzenie odwrotne Pitagorasa:
B3.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% => trójkąt ten jest prostokątny
SK=>TP =1
to samo w zapisie formalnym
q=>p =1
Twierdzenie odwrotne q=>p Pitagorasa udowodniono wieki temu.
Ten dowód oznacza że:
Bycie trójkątem w którym spełniona jest (=1) suma kwadratów jest warunkiem wystarczającym => do tego aby ten trójkąt był prostokątny bo zbiór trójkątów ze spełnioną sumą kwadratów jest podzbiorem => zbioru trójkątów prostokątnych

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p)=1*1=1

Nasz przykład dowód tożsamości zbiorów TP=SK:
Zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK i zbiór SK jest podzbiorem => zbioru TP
TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP)=1*1=1
to samo w zapisie formalnym:
p=q <=> (A1: p=>q)*(B3: q=>p)=1*1=1

Dla B3 zastosujmy prawo Tygryska:
B3: p=>q = B1: p~>q
Stąd mamy tożsamą definicję tożsamości zbiorów p=q;
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór p jest nadzbiorem~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q)=1*1=1
Ostatni zapis to definicja podstawowa równoważności p<=>q.

Definicja podstawowa równoważności p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p<=>q = (p=>q)*(p~>q) =1*1 =1

Stąd mamy dowód iż twierdzenie proste Pitagorasa jest częścią równoważności Pitagorasa dla trójkątów prostokątnych.

Równoważność Pitagorasa dla trójkątów prostokątnych:
Bycie trójkątem prostokątnym jest konieczne ~> i wystarczające => do tego, aby zachodziła w nim suma kwadratów
Innymi słowy:
Dowolny trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1
To samo w zapisie formalnym:
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK

Powyższa, podstawowa definicja równoważności znana jest ludzkości.
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 8090
„koniecznym i wystarczającym”
Wyników: 6290
„potrzeba i wystarcza”
Wyników: 2080
etc

Dla A1 i B1 zastosujmy prawa Kubusia:
A1: p=>q = A2:~p=>~q
B1: p~>q = B2: ~p~>~q
Stąd mamy:
p<=>q = (A2: ~p=>~q)*(B2: ~p~>~q) = ~p<=>~q

Nasz przykład:
A1: TP=>SK = A2: ~TP~>~SK
B1: TP~>SK = B2: ~TP=>~SK
Stąd mamy logicznie tożsamą definicję równoważności Pitagorasa dla trójkątów nieprostokątnych.

Równoważność Pitagorasa dla trójkątów nieprostokątnych:
Do tego aby być trójkątem nieprostokątnym (~TP=1) potrzeba ~> i wystarcza => aby nie zachodziła w nim suma kwadratów (~SK=1)
Innymi słowy:
Dowolny trójkąt jest nieprostokątny (~TP=1) wtedy i tylko wtedy gdy nie zachodzi w nim suma kwadratów (~SK=1)
~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK) =1*1 =1
to samo w zapisie formalnym:
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów:
~TP=~SK

Definicja tożsamości logicznej:
TP<=>SK = ~TP<=>~SK
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wniosek:
Mając udowodnioną równoważność Pitagorasa dla trójkątów prostokątnych:
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1
nie musimy dowodzić równoważności Pitagorasa dla trójkątów nieprostokątnych:
~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK) =1*1 =1
bowiem prawdziwość równoważności ~TP<=>~SK gwarantuje nam prawo rachunku zero-jedynkowego:
TP<=>SK = ~TP<=>~SK

Zauważmy ze:
Kod:

Równoważność:                        |  Równoważność:
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) [=] ~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK)
Definiuje tożsamość zbiorów:         |  Definiuje tożsamość zbiorów:
TP=SK                                #  ~TP=~SK

Gdzie:
[=] - tożsamość logiczna o definicji wyżej

Definicja znaczka różne #:
Dwa pojęcia/zbiory p i q są różne w znaczeniu znaczka # wtedy i tylko wtedy jedno jest zaprzeczeniem drugiego

Pojęcia/zbiory spełniające definicję znaczka różne # spełniają definicję spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
dla q=~p mamy:
p$~p = p*~(~p) + ~p*(~p) = p+~p=1
cnd
Nasz przykład:
Dowolny trójkąt może być tylko i wyłącznie prostokątny „albo”($) nieprostokątny.
TP$~TP = TP*~(~TP)+~TP*(~TP) = TP+~TP =1
Trzeciej możliwości brak.

Oczywiście równoważność między pojęciami (zbiorami) spełniającymi definicje znaczka różne # musi być fałszem.
Sprawdzenie:
Definicja równoważności w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
podstawmy:
q=~p
stąd mamy:
p<=>~p = p*~p + ~p*~(~p) = p*~p + ~p*p =[]+[] =0
cnd

Nanieśmy naszą równoważność to matematycznych związków warunku wystarczającego => i koniecznego ~> w równoważności p<=>q.
Kod:

T2.
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
p<=>q=(A1: p=>q)*(B1: p~>q)=p*q+~p*~q - zapis formalny
TP<=>SK=~(A1: TP=>SK)*(B1: TP~>SK)=TP*SK+~TP*~SK - zapis aktualny
Punkt odniesienia:
p=TP - zbiór trójkątów prostokątnych
q=SK - zbiór trójkątów ze spełnioną sumą kwadratów
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1    [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1    [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
       ##            ##              |     ##             ##
B:  1: p~>q    =1 = 2:~p=>~q  =1    [=] 3: q=>p    =1   = 4:~q~>~p  =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1    [=] 3: SK=>TP  =1   = 4:~SK~>~TP=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.4.4 Definicja podstawowa chaosu p|~~>q

Definicja podstawowa chaosu p|~~>q:
Chaos p|~~>q to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład chaosu p|~~>q potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
Chaos p|~~>q w logice dodatniej (bo q):
p<=>q = ~(A1: p=>q)*~(B1: p~>q) = ~(~p+q)*~(p+~q) = (p*~q)*(~p*q) =[] =0
p<=>q = p*q+~p*~q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład 4.4.4
Zbadaj w skład jakiego spójnika logicznego wchodzi zdanie:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 3
P8=>P3=0
Podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem wystarczającym => do tego, aby ta liczba była podzielna przez 3 bo zbiór P8=[8,16,24..] nie jest podzbiorem => zbioru P3=[3,6,9,12..]

Badamy warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli dowolna liczba jest podzielna przez 8 to może ~> być podzielna przez 3
P8~>P3 =0
Podzielność dowolnej liczby przez 8 nie jest warunkiem koniecznym ~> dla jej podzielności przez 3 bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P3=[3,6,9..]

Stąd mamy rozstrzygnięcie iż zdanie A1 jest częścią chaosu P8|~~>P3.

Nanieśmy to do tabeli matematycznych związków warunku wystarczającego => i koniecznego ~> dla operatora chaosu p|~~>q
Kod:

T2.
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
p|~~>q=~(A1: p=>q)*~(B1: p~>q)=0 - zapis formalny
P8~~>P3=~(A1: P8=>P3)*~(B1: P8~>P3)=0 - zapis aktualny
Punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P3=[3,6,9,12..] - zbiór liczb podzielnych przez 3
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1    [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: P8=>P3  =1 = 2:~P8~>~P3=1    [=] 3: P3~>P8  =1  = 4:~P3=>~P8 =1
       ##            ##              |     ##             ##
B:  1: p~>q    =0 = 2:~p=>~q  =0    [=] 3: q=>p    =0   = 4:~q~>~p  =0
B:  1: P8~>P3  =0 = 2:~P8=>~P3=0    [=] 3: P3=>P8  =0   = 4:~P3~>~P8=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 8:51, 02 Mar 2021    Temat postu:

Powód:
2021-03-02 - będzie modyfikacja


4.5 Prawo śfinii

Porównajmy rozwiązania dwóch przykładów 4.4.1 i 4.4.2.

Przykład 4.4.1
Zbadaj w skład jakiego spójnika logicznego wchodzi zdanie A1:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
to samo w zapisie formalnym:
p=>q =1
Podzielność dowolnej liczby przez 8 jest (=1) warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
##
Badamy warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku:
B1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% ~> jest podzielna przez 2
P8~>P2 =0
to samo w zapisie formalnym:
p~>q =0
Podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem koniecznym ~> dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Rozwiązanie 4.4.1:
Zdanie A1 jest częścią spójnika implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = ~p*q - zapis formalny
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2)= ~P8*P2 - zapis aktualny
Gdzie:
p=P8
q=P2

Przykład 4.4.2
Zbadaj w skład jakiego spójnika logicznego wchodzi zdanie B1:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
to samo w zapisie formalnym:
p=>q =1
Podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~> dla jej podzielności przez 8 bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
##
Badamy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku:
A1.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
to samo w zapisie formalnym:
p~>q =0
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 6 bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Rozwiązanie 4.4 2:
Zdanie B1 jest częścią spójnika implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = p*~q - zapis formalny
A1B1: P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = P2*~P8 - zapis aktualny
Gdzie:
p=P2
q=P8

Skupmy się na rozwiązaniach zapisując:
Rozwiązanie 4.4.1:
Zdanie A1 jest częścią spójnika implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = ~p*q - zapis formalny
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2)= ~P8*P2 - zapis aktualny
Gdzie:
p=P8
q=P2
###
Rozwiązanie 4.4 2:
Zdanie B1 jest częścią spójnika implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = p*~q - zapis formalny
A1B1: P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = P2*~P8 - zapis aktualny
Gdzie:
p=P2
q=P8
Gdzie:
### - różne na mocy prawa śfinii

Zauważmy, że w zapisach formalnych zachodzi:
p|=>q =~p*q ## p|~>q =p*~q
Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różna na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej
Definicje funkcji logicznych p|=>q i p|~>q spełniają definicję znaczka różne na mocy definicji
p|=>q = ~p*q ## ~(p|~>q) = ~(p*~q)=~p+q
cnd

Natomiast w zapisach aktualnych zachodzi:
P8|=>P2 = ~P8*P2 #= P2|~>P8 = P2*~P8
Gdzie:
#= - fałszywa tożsamość logiczna z powodu błędu podstawienia o czym niżej.

Zauważmy że mamy tu czysto matematyczną sprzeczność między zapisem formalnym a zapisem aktualnym.
Aby uratować logikę matematyczną musimy wprowadzić do logiki matematycznej prawo śfinii.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.
Prawo śfinii to inaczej trywialny błąd podstawienia

Dowód:
Rozwiązanie 4.4.1:
Zdanie A1 jest częścią spójnika implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = ~p*q - zapis formalny
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2)= ~P8*P2 - zapis aktualny
Punkt odniesienia dla powyższych definicji:
p=P8
q=P2


###

Rozwiązanie 4.4 2:
Zdanie B1 jest częścią spójnika implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = p*~q - zapis formalny
A1B1: P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = P2*~P8 - zapis aktualny
Punkt odniesienia dla powyższych definicji:
p=P2
q=P8


Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Prawo sfinii to zatem trywialny błąd podstawienia na poziomie szkoły podstawowej.

4.6 Prawo śfinii w przedszkolu

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

4.6.1 Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>

Przykład:
Pani w przedszkolu:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Na mocy prawa śfinii musimy tu przyjąć:
p=P
q=CH
Stąd zdania A1 w zapisie formalnym przyjmuje postać:
p=>q =1
P=>CH =1

Dla zdania A1 skorzystajmy z prawa Kubusia:
A1: P=>H = A2: ~P~>~CH
A2.
Jeśli jutro nie będzie padało (~P=1) to może nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisach formalnych:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> aby jutro nie było pochmurno (~CH=1), bo jak pada (P=1) to na 100% => są chmury (CH=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A2: ~P~>~CH = A1: P=>CH
to samo w zapisach formalnych:
A2: ~p~>~q = A1: p=>q

Znaczenie tożsamości logicznej „=”:
A2: ~P~>~CH = A1: P=>CH
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Czy ktoś zechce pociągnąć dalej tą analizę, bo ziemscy matematycy nas oglądają dzięki ziemskiemu Internetowi.

Małgosia (lat 5):
Poprawną zamianę poprzednika p z następnikiem q mamy dzięki prawu Tygryska:
Prawo Tygryska:
A1: P=>CH = A3: CH~>P
to samo w zapisach formalnych:
A1: p=>q = A3: q~>p
(jak widzimy Małgosia podświadomie przyjęła zdanie A1 za punkt odniesienia)
stąd:
A3.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisach formalnych:
q~>p =1
Chmury (CH=1) są warunkiem koniecznym ~> aby jutro padało (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Jak widzicie drodzy ziemianie, prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A3: CH~>P = A4: ~CH=>~P
to samo w zapisie formalnym:
A3: q~>p = A4: ~q=>~p
stąd:
A4.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => aby nie padało (~P=1) bo zawsze gdy nie ma chmur (~CH=1), nie pada (~P=1)

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1


Definicja tabeli prawdy:
Tabela prawdy pokazuje wszystkie możliwe przypadki jakie mogą zajść dla dowolnego punktu odniesienia.

4.6.2 Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>

Przykład:
Pani w przedszkolu:
B1:
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego aby jutro padało (P=1), bo jak nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P
Stąd:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Zdanie B1 pani przedszkolanki to punkt odniesienia.
Na mocy prawa śfinii musimy tu przyjąć:
p=CH
q=P
Stąd zdanie B1 w zapisach formalnych przyjmuje postać:
B1: CH~>P =1
B1: p~>q =1
Zaś prawo Kubusia w zapisach formalnych brzmi:
B1: CH~>P = B2: ~CH=>~P
B1: p~>q = B2: ~p=>~q

Zamienić poprzednik z następnikiem możemy tu tylko i wyłącznie ma mocy prawa Tygryska lub prawa kontrapozycji.

Pani przedszkolanka wypowiedziała zdanie B1.
Jaś (lat 5) pyta:
Proszę pani a jeśli jutro będzie padało (P=1)?

Pani przedszkolanka:
Prawo Tygryska:
B1: CH~>P = B3: P=>CH
to samo w zapisach formalnych:
B1: p~>q = B3: q=>p
(jak widzimy, swoim pytaniem Jaś wymusił na pani zamianę p i q w zdaniu warunkowym „Jeśli p to q”)

Na mocy prawa Tygryska dostajemy Jasiu odpowiedź:
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Zapis formalny:
B3: q=>p
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno

Zuzia (lat 5):
Proszę pani, a jeśli jutro nie będzie padało?

Pani:
Oczywiście w stosunku do B3 możemy skorzystać z prawa Kubusia:
B3: q=>p = B4: ~q~>~p
stąd:
B4.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Zapis formalny:
B4: ~q~>~p
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby jutro nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)

Ponownie prawo Kubusia samo nam tu wyskoczyło:
B4: ~P~>~CH = B3: P=>CH
zapis formalny:
B4: ~q~>~p = B3: q=>p

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Tabela prawdy dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1


Definicja tabeli prawdy:
Tabela prawdy pokazuje wszystkie możliwe przypadki jakie mogą zajść dla dowolnego punktu odniesienia.

4.6.3 Istota prawa śfinii

Zapiszmy tabele prawdy naszych analiz matematycznych wyżej.

I.
Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>:
A1: P=>CH
Kod:

T1
Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1

###
II.
Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>:
B1: CH~>P =1
Kod:

T2
Tabela prawdy dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1

Gdzie:
### - różne na mocy prawa śfinii

Co wynika z prawa śfinii?

Na przykład to:
Kod:

T1
Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1
A1: P=>CH =1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)

###
Kod:

T2
Tabela prawdy dla punktu odniesienia B1: CH~>P
B3: q=>p  =1
B3: P=>CH =1
Punkt odniesienia:
p=CH (chmury)
q=P (pada)

Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Zauważmy że zdanie A1: P=>CH z tabeli prawdy T1 brzmi identycznie i dowodzi się identycznie jak zdanie B3: P=>CH z tabeli prawdy T2

ALE!
Zdania te są różne z powodu błędu podstawienia ###
Zdania te są różne na mocy prawa śfinii

Zauważmy bowiem, że w tabeli T1 mamy punkt odniesienia:
p=P (pada)
q=CH (chmur)
Natomiast w tabeli T2 mamy punkt odniesienia:
p=CH (chmury)
q=P (pada)
Błąd podstawienia na poziomie szkoły podstawowej widać tu jak na dłoni.

4.6.4 Prawo śfinii dla zdań „Jeśli p to q” wyrażonych spójnikami „i”(*) i „lub”(+)

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji:

Pani w przedszkolu wypowiada zdanie:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Definicja warunku wystarczającego => wyrażonego spójnikami „i”(*) i „lub”(+):
p=>q = ~p+q
Stąd:
Dla naszego zdania A1 mamy:
A1: P=>CH = ~P+CH
Na mocy prawa śfinii musimy tu przyjąć domyślny punkt odniesienia:
p=P (pada)
q=CH (chmury)
Stąd zdanie A1 w zapisach formalnych brzmi
A1: p=>q = ~p+q

Stąd:
Tabela prawdy dla zdania A1:
Kod:

T1
Tabela prawdy dla zdania A1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia A1: P=>CH
A1: P=>CH = ~P+CH
to samo w zapisie formalnym:
A1: p=>q = ~p+q
Punkt odniesienia:
p=P (pada)
q=CH (chmury)


Po chwili pani wypowiada kolejne zdanie:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury są warunkiem koniecznym ~> dla opadów, bo jak nie ma chmur to na 100% => nie pada.

Zauważmy, że w zdaniu B1 pani w żaden sposób nie nawiązała do zdania A1 (np. prawem Tygryska lub kontrapozycji), zatem zdanie B1 musimy przyjąć jako nowy, bieżący punkt odniesienia.
p=CH
q=P
Stąd zdanie B1 w zapisie formalnym:
B1: p~>q
Definicja warunku koniecznego ~> wyrażonego spójnikami „i”(*) i „lub”(+):
p~>q = p+~q
Stąd:
Dla naszego zdania B1 mamy:
B1: CH~>P = CH+~P
Stąd zdanie B1 w zapisach formalnych brzmi
B1: p~>q = p+~q

Stąd:
Tabela prawdy dla zdania B1:
Kod:

T2
Tabela prawdy dla zdania B1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia B1: CH~>P
B1: CH~>P = CH+~P
to samo w zapisie formalnym:
B1: p~>q = p+~q
Punkt odniesienia:
p=CH (chmury)
q=P (pada)


Porównajmy tabele T1 i T2:
Kod:

T1
Tabela prawdy dla zdania A1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia A1: P=>CH
A1: P=>CH = ~P+CH
to samo w zapisie formalnym:
A1: p=>q = ~p+q
Punkt odniesienia:
p=P (pada)
q=CH (chmury)


###

Kod:

T2
Tabela prawdy dla zdania B1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia B1: CH~>P
B1: CH~>P = CH+~P
to samo w zapisie formalnym:
B1: p~>q = p+~q
Punkt odniesienia:
p=CH (chmury)
q=P (pada)

Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Zauważmy że:
Tabela T1: A1: P=>CH = ~P+CH
Tabela T2: B1: CH~>P = CH+~P
Jak widzimy w zapisach aktualnych (mających związek ze zdaniem wypowiedzianym) prawe strony są tożsame bo spójnik „lub”(+) jest przemienny, z czego pozornie wynika tożsamość zdań A1=B1

ALE!
Zdania te są różne z powodu błędu podstawienia ###
Zdania te są różne na mocy prawa śfinii

Zauważmy bowiem, że w tabeli T1 mamy punkt odniesienia:
p=P (pada)
q=CH (chmury)
Natomiast w tabeli T2 mamy punkt odniesienia:
p=CH (chmury)
q=P (pada)
Błąd podstawienia na poziomie szkoły podstawowej widać tu jak na dłoni.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 8:55, 05 Kwi 2021    Temat postu:

2021-04-05 - zamierzam napisać prościej

Algebra Kubusia - wykład podstawowy
4.0 Teoria rachunku zbiorów i zdarzeń

Spis treści
4.0 Teoria rachunku zbiorów i zdarzeń 1
4.1 Podstawowe spójniki implikacyjne w zbiorach 1
4.1.1 Definicja kontrprzykładu w zbiorach 2
4.1.2 Prawa Kobry dla zbiorów 2
4.2 Podstawowe spójniki implikacyjne w zdarzeniach 3
4.2.1 Definicja kontrprzykładu w zdarzeniach 4
4.2.2 Prawo Kobry dla zdarzeń 4
4.3 Notacja stosowana w przykładach w algebrze Kubusia 4
4.5 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 6
4.5.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 10
4.6 Prawo śfinii 11



4.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

4.1 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q.

I.
Definicja elementu wspólnego ~~> zbiorów:

Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory p i q są rozłączne i nieskończone to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

II.
Definicja warunku wystarczającego => w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.1.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

4.1.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem => samego siebie:
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

Zbiór pusty jest zbiorem zewnętrznym w stosunku do dowolnego zbioru niepustego.
Wynika to z definicji zbioru pustego [] w algebrze Kubusia (pkt. 3.0)

4.2 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.2.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

4.2.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

4.3 Notacja stosowana w przykładach w algebrze Kubusia

Notacja stosowana w przykładach w algebrze Kubusia jest zgodna z naturalną logiką matematyczną człowieka, gdzie wszystkie przeczenia „nie” muszą być uwidocznione w kodowaniu (szczegóły w pkt. 3.11)

Zapis pełny:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH=1
co w logice jedynek oznacza:
(P=1)=>(CH=1) =1
Padanie (P=1) jest warunkiem wystarczającym => do tego, aby istniały chmury (CH=1), bo zawsze gdy pada (P=1) są chmury (CH=1)
Prawdziwy warunek wystarczający => A1 wymusza fałszywy kontrprzykład A1’.
A1’.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
co w logice jedynek oznacza:
(P=1)~~>(~CH=1) = (P=1)*(~CH=1) =0
Czytamy:
Niemożliwe jest (=0) zdarzenie: pada (P=1) i nie jest pochmurno (~CH=1)

Prawa Prosiaczka możemy stosować wybiórczo do dowolnej zmiennej binarnej (omówiono w punkcie 1.3).
Prawa Prosiaczka:
(p=1)=(~p=0)
(~p=1)=(p=0)

Weźmy poprzednik w zdaniu A1’:
1:
P=1 - prawdą jest (=1) że pada (P)
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(P=1) = (~P=0)
stąd mamy zapis symboliczny tożsamy:
2:
~P=0 - fałszem jest (=0), że nie pada (~P)
Jak widzimy zachodzi tożsamość zdań:
1: (P=1) = 2: (~P=0)

Weźmy następnik w zdaniu A1’:
3:
~CH=1 - prawdą jest (=1) że nie ma chmur (~CH)
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(~CH=1) = (CH=0)
stąd mamy zapis symboliczny tożsamy:
4:
CH=0 - fałszem jest (=0), że jest pochmurno (CH)
Jak widzimy zachodzi tożsamość zdań:
3: (~CH=1) = 4: (CH=0)

W logice matematycznej jedynki są domyślne i możemy je pominąć, stąd matematycznie tożsamy zapis zdań A1 i A1’ jest następujący.
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie (P) jest warunkiem wystarczającym => do tego, aby istniały chmury (CH), bo zawsze gdy pada (P) są chmury (CH)
Prawdziwy warunek wystarczający => A1 wymusza fałszywy kontrprzykład A1’.
A1’.
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH =0
Niemożliwe jest (=0) zdarzenie: pada (P) i nie jest pochmurno (~CH)

Podsumowanie:
1.
Prosty manewr z pominięciem domyślnych jedynek zredukował nam logikę matematyczną dosłownie do poziomu 5-cio latka, gdzie wszelkie przeczenia muszą być uwidocznione w kodowaniu symbolicznym zdań.
P - pada (zapis pełny: P=1)
~P - nie pada (zapis pełny: ~P=1)
CH - są chmury (zapis pełny: CH=1)
~CH - nie ma chmur (zapis pełny: ~CH=1)
2.
Porównajmy:
P - pada (zapis pełny: p=1)
~P - nie pada (zapis pełny: ~P=1)
Tożsamy zapis ostatniego zdania jest następujący:
~P - nie pada (zapis pełny matematycznie tożsamy: P=0)
Sęk w tym, że w ostatnim zapisie mamy po lewej stronie zmienną zaprzeczoną ~P, natomiast w zapisie pełnym matematycznie tożsamym mamy zmienną P niezaprzeczoną (P=0).
Sprowadzenie wszystkich zmiennych użytych w zdaniu do jedynek na mocy praw Prosiaczka powoduje rzecz bezcenną tzn. dostajemy przełożenie języka potocznego na matematykę w przełożeniu 1:1, co widać chociażby w ostatnich dwóch zdaniach A1 i A1’.
Prawa Prosiaczka (omówiono w punkcie 1.3):
(~p=0)=(p=1)
(p=0)=(~p=1)

4.5 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja znaczka różne # dla funkcji logicznych:
Dwie funkcje logiczne są różne w znaczeniu znaczka # wtedy i tylko wtedy gdy jedna z nich jest zaprzeczeniem (~) drugiej
Przykład:
A1: Y=(p=>q)=~p*q # A1N: ~Y=~(p=>q)=p+~q

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej (szczegóły w pkt. 2.1)

Weźmy nasze funkcje logiczne A1 i B1:
Kod:

A1:  Y= (p=>q)=~p+q  #  A1N: ~Y=(p=>q)=~p+q
      ##                      ##
B1: Y=(p~>q)= p+~q   #  B1N: ~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różna na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że definicje znaczków # i ## są tu spełnione.

Kod:

T1
Definicja warunku wystarczającego =>
        Y=
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
        Y=
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
        Y=
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

##
Kod:

T4
Definicja spójnika “i”(*)
        Y=
   p  q p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 0  0
D: 0* 1  0
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „i”(*) w logice jedynek:
p*q=1 <=> p=1 i q=1
inaczej:
p*q=0
Definicja spójnika „i”(*) w logice zer:
p*q=0 <=> p=0 lub q=0
Inaczej:
p*q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Dowód iż funkcje logiczne z tabel T1, T2, T3 i T4 spełniają definicję znaczka różne na mocy definicji ##.
Kod:

T1:  Y= (p=>q)=~p+q  ## T2:  Y =(p~>q)=p+~q ## T3:  Y= p+q  ## T4:  Y=p*q
     #                       #                      #               #
T1N:~Y=~(p=>q)= p*~q ## T2N:~Y=~(p~>q)=~p*q ## T3N:~Y=~p*~q ## T4N:~Y=~p+~q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Stąd w rachunku zero-jedynkowym wyprowadzamy następujące związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q # ~(p=>q)=p*~q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =0    =0        =0    =0        =0       #    =1
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =1    =1        =1    =1        =1       #    =0
                1     2         3     4         5             6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Przy wypełnianiu tabeli zero-jedynkowej w rachunku zero-jedynkowym nie wolno nam zmieniać linii w sygnałach wejściowych p i q, bowiem wtedy i tylko wtedy o tym czy dane prawo zachodzi decyduje tożsamość kolumn wynikowych.
##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q # ~(p~>q)=~p*q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =1    =1        =1    =1        =1       #    =0
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =0    =0        =0    =0        =0       #    =1
                1     2         3     4         5
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Y = (p=>q) = ~p+q ## Y=(p~>q) =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

Prawo Kubusia:
A1: p=>q = A2:~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż w zdaniu A1 spełniony jest warunek wystarczający =>:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
jest tożsame z udowodnieniem iż w zdaniu A2 spełniony jest warunek konieczny ~>:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
(albo odwrotnie)

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie (P) jest warunkiem wystarczającym => do tego aby było pochmurno (CH), bo zawsze gdy pada (P), jest pochmurno (CH)

Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH
Prawdziwość zdania A1 wymusza prawdziwość zdania A2, z czego wynika, że prawdziwości zdania A2 nie musimy dowodzić.
A2.
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
~P~>~CH =1
Brak opadów (~P) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH), bo jak pada (P) to na 100% => są chmury (CH)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

4.5.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

4.6 Prawo śfinii

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Podstawowa definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IP: Implikacja prosta p|=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=1 - zajście p jest (=1) wystarczające dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Podstawowa definicja implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IO: Implikacja odwrotna p|~>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):[/b]
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):[/b]
p~>q =p+~q

Wyprowadzenie definicji implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
IP:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
A1B1: p|=>q = ~p*q

Wyprowadzenie definicji implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
IO:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
A1B1: p|~>q = p*~q

Stąd mamy:
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
IP: p|=>q =~p*q
##
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
IO: p|~>q = p*~q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Dowód iż funkcje logiczne p|=>q i p|~>q spełniają definicję znaczka różne na mocy definicji ##.
Kod:

IP:  Y =(p|=>q)=~p*q  ## IO:  Y =(p|~>q)=p*~q
     #                        #
IPN:~Y=~(p|=>q)=p+~q  ## ION:~Y=~(p|~>q)=~p+q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych

Doskonale widać, że dowolna funkcja logiczna z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Definicja twierdzenia matematycznego:
Twierdzenie matematyczne to zdanie warunkowe „Jeśli p to q” ze spełnionym warunkiem wystarczającym.
p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q

Rozróżniamy dwa podstawowe twierdzenia matematyczne różne na mocy definicji ##:
A1: p=>q = ~p+q - twierdzenie proste
##
B3: q=>p = ~q+p - twierdzenie odwrotne
Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Dowód iż funkcje logiczne A1 i B3 spełniają definicję znaczka różne na mocy definicji ##.
Kod:

A1:  Y= (p=>q)=~p+q  ## B3:  Y= (q=>p)=~q+p
     #                       #
A1N:~Y=~(p=>q)= p*~q ## B3N:~Y=~(q=>p)=q*~p
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych

Doskonale widać, że dowolna funkcja logiczna z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Matematycznie zachodzi tożsamość logiczna:
Twierdzenie matematyczne => = warunek wystarczający => = relacja podzbioru =>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład:

[link widoczny dla zalogowanych]

Dlaczego Jaś i Kuba tak zaciekle się bija?
Odpowiedź:
Obaj w swoich stwierdzeniach mają racją, a biją się dlatego, gdyż nie ustalili wspólnego punktu odniesienia.

Bez ustalenie wspólnego punktu odniesienia Jaś ma rację:
Jaś:
P8=>P2 - to jest twierdzenie proste p=>q!
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
A1: P8=>P2 =1
To samo w zapisie formalnym (ogólnym):
A1: p=>q =1
Punkt odniesienia:
p=P8
q=P2

Bez ustalonego wspólnego punktu doniesienia Kuba również ma rację:
Kuba:
P8=>P2 - to jest twierdzenie odwrotne q=>p!
B3.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
B3: P8=>P2 =1
To samo w zapisie formalnym (ogólnym):
B3: q=>p =1
Punkt odniesienia:
p=P2
q=P8

Gdzie:
P2=[2,4,6,8..] - zbiór liczba podzielnych przez 2
P8=[8,16,24..] - zbiór liczb podzielnych przez 8

I.
Zdanie bazowe Jasia, punkt odniesienia:


Twierdzenie proste A1: p=>q:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
A1: P8=>P2 =1
To samo w zapisie formalnym:
A1: p=>q =1
Podzielność dowolnej liczby przez 8 jest (=1) wystarczająca => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Punkt odniesienia dla twierdzenia prostego Jasia p=>q to:
p=P8
q=P2

Badamy prawdziwość/fałszywość twierdzenia odwrotnego B3: q=>p w stosunku do twierdzenia prostego A1: p=>q.

Twierdzenie odwrotne B3: q=>p:
B3.
Jeśli dowolna liczba jest podzielna przez 2 (P2) to na 100% => jest podzielna przez 8 (P8)
B3: P2=>P8 =0 - bo kontrprzykład: 2
To samo w zapisie formalnym:
B3: q=>p =0
Punkt odniesienia dla zdania B3: q=>p to:
q=P2
p=P8

Podsumowanie:
Zauważmy, ze punkt odniesienia (p=P8, q=P2) dla zdania A1: p=>q (A1: P8=>P2) jest identyczny jak dla zdania B3: q=>p (B3: P2=>P8), dlatego porównywania A1 z B3 jest matematycznie poprawne (ma sens).

II.
Zdanie bazowe Kuby, punkt odniesienia:

Zdanie warunkowe „Jeśli p to q” ze spełnionym warunkiem koniecznym:
B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2) to może ~> być podzielna przez 8 (P8)
B1: P2~>P8 =1
To samo w zapisie formalnym (ogólnym):
B1: p~>q =1
Podzielność dowolnej liczby przez 2 jest konieczna ~> dla jej podzielności przez 8 bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

Punkt odniesienia Kuby dla zdania bazowego B1: p~>q to:
p=P2
q=P8

Kuba ma prawo skorzystać z dowolnego prawa logiki matematycznej.
Zastosujmy dla zdania bazowego B1 prawo Tygryska.
Prawo Tygryska:
B1: p~>q = B3: q=>p
stąd mamy w zapisach aktualnych:
B1: P2~>P8 = B3: P8=>P2
Gdzie:
p=P2
q=P8
stąd Kuba wypowiada:

Twierdzenie odwrotne prawdziwe B3: q=>p:
B3.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
B3: P8=>P2 =1
To samo w zapisie formalnym (ogólnym):
B3: q=>p =1
Podzielność dowolnej liczby przez 8 jest (=1) wystarczająca => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Punkt odniesienia Kuby dla zdania B3: q=>p to:
q=P8
p=P2

Mamy prawdziwe twierdzenie odwrotne Kuby B3: q=>p (B3: P8=>P2).
Badamy prawdziwość/fałszywość twierdzenie prostego A1: p=>q w stosunku do znanego twierdzenia odwrotnego B3: q=>p (B3: P8=>P2):

Twierdzenie proste A1: p=>q:
A1.
Jeśli dowolna liczba jest podzielna przez 2 (P2) to na 100% => jest podzielna przez 8 (P8)
P2=>P8 =0 - bo kontrprzykład: 2
To samo w zapisie formalnym:
A1: p=>q =0
Punkt odniesienia dla zdania A1 to:
p=P2
q=P8

Podsumowanie:
Zauważmy, ze punkt odniesienia (p=P2 i q=P8) dla zdania B3: q=>p (B3: P8=>P2) jest identyczny jak dla zdania A1: p=>q (A1: P2=>P8), dlatego porównywanie B3 z A1 jest matematycznie poprawne (ma sens).

Wróćmy do bijatyki Jasia z Kubą:



[link widoczny dla zalogowanych]

Doskonale widać, że Jaś i Kuba patrzą na identyczne zdanie P8=>P2 z różnych punktów odniesienia.

Jaś:
P8=>P2 - to jest twierdzenie proste p=>q!
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
A1: p=>q =1
A1: P8=>P2 =1
Punkt odniesienia:
p=P8
q=P2

Kuba:
P8=>P2 - to jest twierdzenie odwrotne q=>p!
B3.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
B3: q=>p =1
B3: P8=>P2 =1
Punkt odniesienia:
p=P2
q=P8

Podsumowanie:
Porównanie zdania Jasia A1: p=>q (A1: P8=>P2) ze zdaniem Kuby B3: q=>p (B3: P8=>P2) jest matematycznie błędne bowiem są to zdania widziane z różnych punktów odniesienia.
Punkt odniesienia Jasia:
p=P8
q=P2
Punkt odniesienia Kuby:
q=P8
p=P2

Zauważmy, że zdanie prawdziwe Jasia A1: p=>q (A1: P8=>P2) i zdanie prawdziwe Kuby B3: q=>p (B3: P8=>P2) brzmią identycznie z dokładnością do każdej literki i każdego przecinka, również kodowanie tych zdań warunkiem wystarczającym => jest identyczne - a mimo to są to zdania różne na mocy definicji ## z powodu trywialnego błędu podstawienia.

Jak zapobiec tego typu nieporozumieniom?

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Jaś wypowiada zdanie:
X.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
P8=>P2 =1
Na mocy prawa śfinii kodowanie formalne zdania X jest tylko jedno:
A1: p=>q =1
Stąd:
p=P8
q=P2

Kuba wypowiada zdanie:
X.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
P8=>P2 =1
Na mocy prawa śfinii kodowanie formalne zdania X jest tylko jedno:
A1: p=>q =1
Stąd:
p=P8
q=P2

Jak widzimy, prawo śfinii wymusza na uczestnikach matematycznej dyskusji identyczny punkt odniesienia czyniąc dyskusję sensowną, bez wzajemnej bijatyki.

Prawo naszego Wszechświata:
Otaczająca nas rzeczywistość zależy od punktu odniesienia.
Z „czarnego” zawsze można zrobić „białe” i odwrotnie, wystarczy zmienić punkt odniesienia.

Wniosek:
Zanim zaczniemy się kłócić o cokolwiek ustalmy wspólny punkt odniesienia.

W logice matematycznej wspólny punkt odniesienia zapewnia prawo śfinii.

W świecie rzeczywistym nie ma jednak lekko.
Przykład:
Z punktu odniesienia Żyda dobro to brak Nazistów
ale:
Z punktu odniesienia Nazisty dobro to brak Żydów
etc


Ostatnio zmieniony przez rafal3006 dnia Pon 8:56, 05 Kwi 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 16:41, 11 Kwi 2021    Temat postu:

2021-04-11
Radykalnie skracam wstęp - za dużo tu ataków na gówno zwane "implikacja materialna".
Nie muszę atakować - czytelnik który zrozumie AK z własnej woli wykopie "implikację materialną" do piekła na wieczne piekielne męki

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-w-finalna,18263.html#574079

Algebra Kubusia - matematyka języka potocznego
Matematyczny Raj: 2021-04-05
Wersja finalna!

Autor:
Kubuś ze 100-milowego lasu

Rozszyfrowali:
Rafal3006 i przyjaciele

Wszystko należy upraszczać jak tylko można, ale nie bardziej.
Albert Einstein


Z dedykacją dla naszych wnuków, aby nikt, nigdy więcej, nie prał im mózgów gównem zwanym „implikacja materialna”

Tym gównem:
Cytuję zdania prawdziwe z gówno-podręcznika matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Jeśli pies ma cztery łapy to Księżyc krąży wokół Ziemi
Jeśli pies ma osiem łap, to Księżyc krąży wokół Ziemi
Jeśli 2+2=5 to Płock leży nad Wisłą
Ziemia krąży wokół Księżyca wtedy i tylko wtedy, gdy pies ma osiem łap
Księżyc krąży wokół Ziemi wtedy i tylko wtedy gdy pies ma cztery łapy


Dowolny matematyk który broni prawdziwości powyższych zdań (wielu jest takich) jest pacjentem zakładu zamkniętego bez klamek, tylko o tym nie wie.
Dowód iż wielu matematyków na serio broni powyższego gówna:
[link widoczny dla zalogowanych]

Jeśli ziemscy matematycy nie zrozumieją banalnego wykładu algebry Kubusia dla przedszkolaków:
3.0 Kubusiowa teoria zbiorów

To będę miał takie samo zdanie o nich jak twardogłowi matematycy, Idiota i Irbisol, o mnie:
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2000.html#299283
idiota napisał:
Boże, co za bzdury...
To niesamowite jak rafał swoim nierozumieniem niczego potrafi sobie w głowie posklejać co się da i zrobić to jakoś odnoszące się do jego idee fixe...
Przecież tego nie ma sensu nawet wyjaśniać, bo widać tu raczej symptomy choroby, a nie rozumowanie.

http://www.sfinia.fora.pl/forum-kubusia,12/p-1-i-q-1-ale-p-q-0,10575-450.html#369345
Irbisol napisał:
Ty jesteś naprawdę ograniczony - nie ma z tobą podstawowego kontaktu ... Nie wiem, jak do ciebie przemówić, bo twoja głupota przerasta wszystko, co do tej pory spotkałem na wielu forach

W algebrze Kubusia 100% definicji w obszarze logiki matematycznej jest sprzecznych z jakąkolwiek logiką „matematyczną” ziemskich matematyków.
Wniosek:
Z definicji niemożliwy jest jakikolwiek kontakt między ekspertem algebry Kubusia (5-cio latkiem) a ziemskim, twardogłowym matematykiem.
Algebra Kubusia to Armagedon wszelkich ziemskich logik „matematycznych” - zrozumie to każdy, kto zrozumie AK. Życzę wszystkim ziemskim matematykom, nawet tym twardogłowym, by udało im się zrozumieć algebrę Kubusia.
Na 100% nie wszyscy ziemscy matematycy są twardogłowi dla których „implikacja materialna” jest bogiem tzn. odcina im zdolność do logicznego myślenia (nawet na maleńkiej sfinii spotkałem takich: Wuj Zbój, Volrath, Macjan, Fiklit) - w nich cala nadzieja, to od nich zależy czy ludzkość zrozumie kiedykolwiek algebrę Kubusia.

Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski, MaluśnaOwieczka i inni.

Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuję w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej.
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez Fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
4.
Irbisol - znakomity tester końcowej wersji algebry Kubusia, za wszelką cenę usiłujący ją obalić.
Czyż można sobie wymarzyć lepszego testera?
Finałowa dyskusja z Irbisolem!
5.
MaluśnaOwieczka - końcowy uczestnik dyskusji o algebrze Kubusia w trakcie której wiele definicji zostało doprecyzowanych.

Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2021
Niniejszy podręcznik jest końcowym efektem 15-letniej dyskusji na forach śfinia, ateista.pl i yrizona - to około 30 tys postów, średnio 5 postów dziennie wyłącznie na temat logiki matematycznej.



Części:

Wstęp do algebry Kubusia:
1.0 Algebra Boole’a
2.0 Nieznana algebra Boole’a
3.0 Kubusiowa teoria zbiorów

Algebra Kubusia - wykład podstawowy:
4.0 Teoria rachunku zbiorów i zdarzeń
5.0 Operator implikacji prostej p||=>q
5.2 Przykłady operatorów implikacji prostej p||=>q
6.0 Operator implikacji odwrotnej p||~>q
6.2 Przykłady operatorów implikacji odwrotnej p||~>q
7.0 Operator równoważności p|<=>q
7.2 Przykłady operatorów równoważności p|<=>q
8.0 Operator albo p|$q
8.2 Przykłady operatorów albo p|$q
9.0 Operator chaosu p||~~>q
9.2 Przykłady operatorów chaosu p||~~>q

Obietnice i groźby:
10.0 Obietnice i groźby
10.1 Obietnica
10.2 Groźba
10.3 Analiza obietnicy E=>K z różnych punktów odniesienia
10.4 Kto wierzy we mnie będzie zbawiony


Wstęp

Dlaczego od 15 lat zajmuję się logiką matematyczną?

1.
Jestem absolwentem elektroniki na Politechnice Warszawskiej (1980r) - specjalność automatyka.
Z racji wykształcenia techniczną algebrę Boole’a znam perfekcyjnie od czasów studiów i wiem, że złożone automaty cyfrowe w bramkach logicznych projektuje się w naturalnej logice matematycznej człowieka tzn. opisanej równaniami algebry Boole’a - nigdy tabelami zero-jedynkowymi!

2.
Pojęcie „Klasyczny Rachunek Zdań” usłyszałem po raz pierwszy w życiu 15 lat temu (26 lat po skończeniu studiów) od Wuja Zbója.
Gdy usłyszałem zdania prawdziwe w KRZ to się we mnie zagotowało.
Przykładowe zdania prawdziwe w KRZ:
a) Jeśli 2+2=4 to Płock leży nad Wisłą
b) Jeśli 2+2=5 to 2+2=4
c) Jeśli 2+2=5 to jestem papieżem
Dowód (na serio!) prawdziwości tego zdania na gruncie KRZ jest tu:
[link widoczny dla zalogowanych]
… i tu:
[link widoczny dla zalogowanych]
Bertrand Russell napisał:

Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.

Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."


3.
Dlaczego z takim uporem drążyłem algebrę Kubusia?
Po zapisaniu przeze mnie praw Kubusia 15 lat temu:
p=>q = ~p~>~q
p~>q = ~p=>~q
Zrozumiałem ich sens w obsłudze obietnicy Chrystusa:
A1.
Kto wierzy we mnie będzie zbawiony
W=>Z
Tylko i wyłącznie dlatego ciągnę temat „Logika matematyczna” od 15 lat

4.
Z algebrą Kubusia jest identycznie jak z gramatyką języka mówionego.
Czy trzeba znać gramatykę by posługiwać się językiem ojczystym?
Czy 5-cio latek musi znać gramatykę języka by posługiwać się językiem ojczystym?
Odpowiedź jest jednoznaczna:
NIE!
Fundamentem języka mówionego jest algebra Kubusia, nigdy jakaś tam gramatyka, której osobiście nigdy nie znałem tzn. do dzisiaj nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.
Algebra Kubusia to logika matematyczna rządząca naszym Wszechświatem, zarówno żywym, jak i martwym z matematyką włącznie. Wszyscy perfekcyjnie znamy algebrę Kubusia od momentu narodzin, do śmierci, nie mamy żadnych szans, aby się od niej uwolnić.

5.
Fundamenty algebry Kubusia to w 100% logika formalna (ogólna) powstała na bazie praw logiki matematycznej obowiązujących w świecie martwym tzn. z fundamentów algebry Kubusia wywalamy wszelkie zdania w których możemy zarzucić człowiekowi kłamstwo.

Definicja wolnej woli w świecie żywym:
Wolna wola (prawo do kłamstwa) to zdolność do gwałcenia wszelkich praw logiki matematycznej rodem ze świata martwego.

Z powyższej definicji wynika, że warunkiem koniecznym do opisania języka potocznego człowieka jest poznanie praw logiki matematycznej obowiązującej w świecie martwym (w tym w matematyce).
Świat martwy nie ma prawa gwałcić (i nie gwałci!) swoich własnych praw logiki matematycznej pod które podlega.

W algebrze Kubusia język potoczny człowieka ma przełożenie 1:1 na logikę formalną (ogólną).
Definicje w algebrze Kubusia i KRZ są totalnie sprzeczne, sprzeczne mamy nawet pojęcia podstawowe: podzbiór, nadzbiór, logika formalna.

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

6.
Algebra Boole’a to najtrudniejsza część algebry Kubusia. Chodzi tu o matematyczną minimalizację złożonych równań algebry Boole’a które układa się i minimalizuje w projektowaniu automatów sterujących w bramkach logicznych na I roku elektroniki studiów wyższych.
Wbrew pozorom, naturalnymi ekspertami algebry Boole’a są wszystkie 5-cio latki bowiem w języku potocznym, w komunikacji człowieka z człowiekiem, nasz mózg operuje minimalnymi równaniami algebry Boole’a, których nie da się dalej minimalizować - nie jest tu zatem potrzebna jakakolwiek teoria minimalizacji równań logicznych.
Wskazówki dla nauczycieli jak uczyć algebry Boole’a by była zrozumiała dla przedszkolaków zawarto w punkcie 2.3.

Moja maksyma sprzed 35 lat:
1.
Każdy duży program komputerowy, w tym teorię matematyczną zwaną algebrą Kubusia, można udoskonalać w nieskończoność. Chodzi tu oczywiście nie o błędy czysto matematyczne, bo tych na 100% nie ma, ale o formę przekazu AK dla wybranych grup ludzkości: przedszkolaki, uczniowie szkoły podstawowej, średniej, studenci, prawnicy, humaniści na zawodowych matematykach kończąc.
2.
Im dłużej się myśli tym lepszy program można napisać, tym doskonalszą wersję algebry Kubusia można zapisać.
3.
Myślenie w nieskończoność nie ma sensu, tu trzeba tworzyć coraz doskonalsze wersje, dążąc do doskonałości absolutnej, której nie da się osiągnąć z definicji bo to co jest dobre dla 5-cio latka nie musi być wystarczające dla zawodowego matematyka.

Kluczowa uwaga:
W algebrze Kubusia 100% definicji z obszaru logiki matematycznej jest sprzecznych z definicjami obowiązującymi w Klasycznym Rachunku Zdań. Nie ma więc najmniejszego sensu czytanie algebry Kubusia i porównywanie tutejszych definicji z definicjami obowiązującymi w KRZ.
Jestem pewien, że nie ma wewnętrznej sprzeczności w algebrze Kubusia, bo wszystko jest tu w 100% zgodne z teorią bramek logicznych, której ekspertem jestem od czasu zaliczenia laboratorium techniki cyfrowej na I roku Politechniki Warszawskiej (1975r), gdzie budowaliśmy złożone automaty cyfrowe w bramkach logicznych - wtedy mikroprocesorów praktycznie jeszcze nie było, bowiem pierwszy przyzwoity mikroprocesor Intel i8080 narodził się w roku 1974.
Ciekawostka:
W 1974r Intel i8080 kosztował 360USD przy średniej płacy w Polsce 15USD.
[link widoczny dla zalogowanych]
Ile trzeba było pracować, by kupić ten szczyt techniki wymagający trzech napięć zasilania (+12V, +5V i -5V)?
W 1971r ukazała się pierwsza pamięć EPROM Intela i1702 o kosmicznej pojemności 256 bajtów wymagająca trzech napięć zasilania jak wyżej - w takiej pamięci można zapisać co najwyżej 256 liter.
[link widoczny dla zalogowanych]
… a dzisiaj (2021r)?
[link widoczny dla zalogowanych]
Na karcie pamięci microSD (wymiary: 11*15*1mm) z telefonu komórkowego mieści się 1024GB (1024GB=1024 miliardów bajtów-liter)


Prawo Owieczki - najbardziej zaskakujące twierdzenie w historii matematyki!

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodna z definicjami obowiązującymi w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575901
MaluśnaOwieczka napisał:

rafal3006 napisał:
Czy zgadzasz się z fundamentem wszelkich ziemskich logik mówiącym iż:
„z fałszu wynika wszystko”

Tak, zgadzam się.


MaluśnaOwieczko:
Nie zamierzam udowadniać fałszywości poniższych dogmatów ziemskich matematyków:
1: z fałszu wynika wszystko
2: ze zbioru pustego wynika wszystko
3: ze zdania fałszywego wynika wszystko
bowiem zdanie „ze zbioru pustego wynika wszystko” jest prawdziwe pod warunkiem przyjęcia definicji zbioru pustego [] i Uniwersum U z algebry Kubusia.

Dowód prawdziwości prawa Owieczki (punkt. 3.2):
3.0 Kubusiowa teoria zbiorów
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 20:58, 27 Kwi 2021    Temat postu:

27-04-27
Jutro wymieniam poniższy rozdział w 100%.

Powód:
Odkrycie ogólnego algorytmu pozwalającego zakwalifikować dowolne zdanie warunkowe "Jeśli p to q" do jednego z 5 operatorów logicznych!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-w-finalna,18263.html#578755

Algebra Kubusia - wykład podstawowy
6.2 Przykłady operatorów implikacji odwrotnej p||~>q

Spis treści
6.2 Przykład operatora implikacji odwrotnej CH||~>P w zdarzeniach 1
6.2.1 Perła w koronie operatora implikacji odwrotnej CH||~>P 5
6.3 Przykład operatora implikacji odwrotnej A||~>S w zdarzeniach 12
6.3.1 Wisienka na torcie w operatorze implikacji odwrotnej A||~>S 16
6.4 Przykład operatora implikacji odwrotnej P2||~>P8 w zbiorach 17




6.2 Przykład operatora implikacji odwrotnej CH||~>P w zdarzeniach

Przypomnijmy sobie elementarz algebry Kubusia.

Elementarne spójniki implikacyjne w zdarzeniach to:
1.
Definicja zdarzenia możliwego ~~>:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
inaczej:
p~~>q = p*q =0 - gdy nie jest możliwe (=0) jednoczesne zajście zdarzeń p i q
2.
Definicja warunku wystarczającego => w zdarzeniach:
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p wymusza => zajście zdarzenia q
p=>q =1
inaczej:
p=>q =0
3.
Definicja warunku koniecznego ~> w zbiorach:
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q.
p~>q =1
Inaczej:
p~>q =0

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q.

Zadanie matematyczne w I klasie LO w 100-milowym lesie:
Dane jest zdanie:
W.
Jeśli jutro będzie pochmurno to może padać
Polecenia:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę szczegółową zlokalizowanego operatora logicznego.

Rozwiązanie Jasia (I klasa LO):
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p
      ##        ##           ##        ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Tabelę T1 każdy matematyk musi znać na pamięć jak tabliczkę mnożenia do 100, bez tej znajomości może zapomnieć o jakiejkolwiek, poprawnej logice matematycznej.

Na początek sprawdzamy prawo Kobry:
WK.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> padać (P=1)
CH~~>P = CH*P =1
Tożsamy zapis formalny:
p~~>q = p*q =1 - punkt odniesienia na mocy prawa śfinii
Punkt odniesienia na mocy prawa śfinii to:
p = CH (chmury)
q = P (pada)
Możliwe jest (=1) zdarzenie ~~>: są chmury (CH=1) i pada (P=1).
Jak widzimy zdanie B1 kodowane zdarzeniem możliwym ~~> jest prawdziwe.

Załóżmy, że zdanie WK spełnia definicję warunku wystarczającego =>, wtedy mamy:
A1.
Jeśli jutro będzie pochmurno (CH=1) to na 100% => będzie padało (P=1)
CH=>P =0
to samo w zapisie formalnym:
p=>q =0
Definicja warunku wystarczającego => nie jest spełniona bo nie zawsze gdy są chmury, pada.
Indeksowanie B1 wymusza tu tabela T1.
Zauważmy bowiem, że w kolumnach A1B1 i A2B2 (tylko te nas interesują na mocy prawa śfinii) warunek wystarczający p=>q mamy wyłącznie na pozycji A1.
cnd

Aby rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie A1 badamy prawdziwość/fałszywość zdania A1 kodowanego warunkiem koniecznym ~>.
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisie formalnym:
p~>q =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego aby jutro padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P

Definicja tożsamości logicznej „=”:
B1: CH~>P = B2:~CH=>~P
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Sprawdźmy iż dowód prawdziwości/fałszywości zdania B2 jest prostszy.
B2.
Jeśli jutro nie będzie pochmurno (CH=1) to na 100% => nie będzie padało
~CH=>~P =1
Wszelkie opady biorą się z chmur, zatem jeśli ich zabraknie to na 100% nie będzie padało
cnd

Kolejny trywialny dowód tożsamy to skorzystanie dla zdania B1 z prawa Tygryska:
B1: p~>q = B3: q=>p - zapis formalny
B1: CH~>P = B3: P=>CH - zapis aktualny
Zdanie B3 jest już absolutnie trywialne.
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

Na mocy prawa Tygryska prawdziwość warunku wystarczającego B3: P=>CH =1 wymusza prawdziwość warunku koniecznego ~> B1: CH~>P =1
cnd

Nanieśmy zdania A1 i B1 do tabeli prawdy T3.
A1: CH=>P =0 - chmury nie są (=0) wystarczające => dla padania bo nie zawsze gdy są chmury, pada
B1: CH~>P =1 - chmury są (=1) konieczne ~> dla padania, bo deszcz bierze się z chmur
Kod:

T3
Analiza matematyczna zdania:
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1
Punkt odniesienia na mocy prawa śfinii to:
p=>q =1
Gdzie:
p=CH (chmury)
q=P (pada)
       A1B1:         A2B2:        |      A3B3:          A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0    [=] 3: q~>p   =0 = 4:~q=>~p  =0
A:  1: CH=>P  =0 = 2:~CH~>~P=0    [=] 3: P~>CH  =0 = 4:~P=>~CH =0
A’: 1: p~~>~q =1 =                [=]              = 4:~q~~>p  =1                   
A’: 1: CH~~>~P=1 =                [=]              = 4:~P~~>CH =1                   
       ##             ##           |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1    [=] 3: q=>p   =1 = 4:~q~>~p  =1
B:  1: CH~>P  =1 = 2:~CH=>~P=1    [=] 3: P=>CH  =1 = 4:~P~>~CH =1
B’:              = 2:~p~~>q =0    [=] 3: q~~>~p =0
B’:              = 2:~CH~~>P=0    [=] 3: P~~>~CH=0
Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q
Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1:
Co się stanie jeśli zajdzie p?
p|~>q  = ~(A1: p=>q) * (B1: p~>q) - zapis formalny
CH|~>P = ~(A1: CH=>P)* (B1: CH~>P) - zapis aktualny
A2B2:
Co się stanie jeśli zajdzie ~p?
~p|=>~q  = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny
~CH|=>~P = ~(A2:~CH~>~P)*(B2:~CH=>~P) - zapis aktualny
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych:
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q =~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Innymi słowy:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania A1B1 i A2B2:

A1B1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro będzie pochmurno (CH=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
To samo w zapisie formalnym (na mocy prawa śfinii):
p~>q =1
Chmury (CH=1) są konieczne ~> by jutro padało (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P - prawo Kubusia w zapisie aktualnym
B1: p~>q = B2: ~p=>~q =1 - prawo Kubusia w zapisie formalnym

LUB

A1: CH=>P =0
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1 musi być prawdą.
Sprawdzenie:
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
To samo w zapisie formalnym:
p~~>~q = p*~q =1
Możliwe jest (=1) zdarzenie ~~>: są chmury (CH=1) i nie pada (~P=1)

A2B2.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH)?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem.
Sprawdzenie:
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Niemożliwe jest (=0) zdarzenie ~~>: nie ma chmur (~CH=1) i pada (P=1)

Podsumowanie:
Istotą operatora implikacji odwrotnej CH||~>P jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie CH (chmury) i gwarancja matematyczna => po stronie ~CH (brak chmur), co widać w powyższej analizie.

6.2.1 Perła w koronie operatora implikacji odwrotnej CH||~>P

Perłą w koronie operatora implikacji odwrotnej CH|~>P w logice dodatniej (bo P) jest tożsamy logicznie operator implikacji prostej ~CH||=>~P w logice ujemnej (bo ~P).

Definicja tożsamości logicznej:
CH||~>P = ~CH|=>~P
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony

Wniosek:
Jeśli udowodnimy iż zdanie warunkowe „Jeśli p to q” należy do operatora implikacji odwrotnej CH||~>P to tym samym udowodnimy, iż zdanie to jest częścią składową implikacji prostej ~CH||=>~P (albo odwrotnie)

Sprawdźmy, czy tak jest w istocie.

Przypomnijmy sobie elementarz algebry Kubusia.

Elementarne spójniki implikacyjne w zdarzeniach to:
1.
Definicja zdarzenia możliwego ~~>:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
inaczej:
p~~>q = p*q =0 - gdy nie jest możliwe (=0) jednoczesne zajście zdarzeń p i q
2.
Definicja warunku wystarczającego => w zdarzeniach:
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p wymusza => zajście zdarzenia q
p=>q =1
inaczej:
p=>q =0
3.
Definicja warunku koniecznego ~> w zbiorach:
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q.
p~>q =1
Inaczej:
p~>q =0

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q.

Zadanie matematyczne w I klasie LO w 100-milowym lesie:
Dane jest zdanie wypowiedziane:
W.
Jeśli jutro nie będzie pochmurno to może padać
Polecenia:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę szczegółową zlokalizowanego operatora logicznego.

Rozwiązanie Jasia (I klasa LO):
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p
      ##        ##           ##        ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Tabelę T1 każdy matematyk musi znać na pamięć jak tabliczkę mnożenia do 100, bez tej znajomości może zapomnieć o jakiejkolwiek, poprawnej logice matematycznej.

Lokalizacji do którego operatora logicznego należy zdanie wypowiedziane W dokonujemy w dwóch krokach.

Krok 1

Na początek badamy prawem Kobry czy zdanie W ma szansę być prawdziwym.
WK.
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
To jest zdane od którego zaczynamy analizę matematyczną, zatem na mocy prawa śfinii zapisujemy:
~p~~>q = ~p*q =0
Punkt odniesienia na mocy prawa śfinii to:
p= CH (chmury)
q = P (pada)
Niemożliwe jest (=0) jednoczesne zajście zdarzeń: nie ma chmur (~CH=1) i pada (P=1)
Zdanie WK jest ewidentnie fałszywe, jednak każdy 5-cio latek wie, że istnieje związek między chmurką a deszczem.
Wniosek:
Zdanie WK na 100% jest fałszywym kontrprzykładem dla prawdziwego warunku wystarczającego B2.
B2.
Jeśli jutro nie będzie pochmuro (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
to samo w zapisie formalnym na mocy prawa śfinii:
~p=>~q =1
Brak chmur jest (=1) warunkiem wystarczającym => dla braku opadów (~P=1) bo zawsze gdy nie a chmur, nie pada.
Uwaga:
Indeksowanie B2 wynika z tabeli T1

Dlaczego?
W kolumnach A1B1 i A2B2 (na mocy prawa śfinii tylko te kolumny nas interesują) warunek wystarczający ~p=>~q występuje wyłącznie na pozycji B2.
cnd

Zauważmy, że jeśli skorzystamy z prawa kontrapozycji to dowód prawdziwości zdania B2 będzie prostszy

Prawo kontrapozycji:
B2: ~p=>~q = B3: q=>p
Nasz przykład:
B2: ~CH=>~P = B3: P=>CH

Dowodzimy warunku wystarczającego B3.
B3:
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
to samo w zapisie formalnym:
q=>p =1
Definicja warunku wystarczającego => jest (=1) spełniona bo zawsze gdy spada, są chmury.
cnd

Definicja tożsamości logicznej „=”:
B2: ~CH=>~P = B3: P=>CH
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Na mocy definicji tożsamości logicznej jest wszystko jedno którą stronę weźmiemy na cel i będziemy dowodzić jej prawdziwości/fałszywości.
W przypadku prostej teorii zdarzeń (nasz przykład) dowód fałszywości którejkolwiek ze stron jest banalny, ale w operacjach na zbiorach nieskończonych, gdzie obowiązuje identyczna logika matematyczna jak w teorii zdarzeń, już tak nie jest - tu zdania z najprostszym warunkiem wystarczającym => zawsze dowodzi się najprościej, czego wkrótce doświadczymy.

Krok 2

Badamy prawdziwość/fałszywość zdania B2 kodowanego warunkiem koniecznym ~>.
A2.
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~> nie padać (~P=1)
~CH~>~P =1
to samo w zapisie formalnym:
~p~>~q=1
Brak chmur (~CH=1) nie jest (=0) warunkiem koniecznym ~> aby jutro nie padało (~P=1) bo mogą być chmury i może nie padać.
Indeksowanie A2 wynika tu z tabeli T1.

Jak sprawdzić czy zdanie A2 jest prawdziwe/fałszywe w najprostszy możliwy sposób?
Odpowiedź:
Trzeba skorzystać z prawa Kubusia sprowadzając zdanie A2 do najprostszego warunku wystarczającego =>.
Prawo Kubusia na mocy tabeli T1:
A2: ~CH~>~P = A1: CH=>P
Dowodzimy prawdziwości/fałszywości zdania A1:
A1.
Jeśli jutro będzie pochmurno to na 100% => będzie padało
CH=>P =0
Definicja warunku wystarczającego => nie jest (=0) spełniona, bo nie zawsze, gdy jest pochmuro, pada.
cnd
Na mocy prawa Kubusia fałszywość warunku wystarczającego A1: CH=>P=0 wymusza fałszywość warunku koniecznego A2:~CH~>~P =0
cnd

Zdanie które przeanalizowaliśmy logicznie brzmi:
W.
Jeśli jutro nie będzie pochmurno to może padać
~CH~~>P = ~CH*P =0
Nie jest możliwe (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
na mocy prawa śfinii to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Gdzie:
p=CH(chmury)
q=P(pada)

Rozstrzygnięcie:
Jak to wyżej udowodniliśmy zdanie W jest fałszywym kontrprzykładem:
B2’: ~CH~~>P = ~CH*P =0
dla prawdziwego warunku wystarczającego B2:
B2: ~CH=>~P =1

Udowodniliśmy także fałszywość zdania B2 kodowanego warunkiem koniecznym ~>:
A2: ~CH~>~P =0

Te dwa dowody, B2 i A2 dają nam pewność, że mamy tu do czynienia z implikacją prostą ~CH|=>~P w logice ujemnej (bo ~P).

Definicja implikacji prostej ~CH|=>~P w logice ujemnej (bo ~P):
Implikacja prosta ~CH||=>~P to zachodzący wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A2: ~CH~>~P =0 - brak chmur nie jest (=0) konieczny ~> dla braku opadów
B2: ~CH=>~P =1 - brak chmur jest (=1) wystarczający => dla braku opadów
stąd:
~CH|=>~P = ~(A2: ~CH~>~P)*(B2: ~CH=>~P) = ~(0)*1 = 1*1 =1

Zapiszmy naszą analizę w tabeli prawdy implikacji odwrotnej ~P|~>~CH w logice ujemnej (bo ~CH):
Kod:

T3
Analiza matematyczna zdania:
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0
Punkt odniesienia na mocy prawa śfinii to:
~p~~>q = ~p*q =0
Gdzie:
p=CH (chmury)
q=P (pada)
       A1B1:         A2B2:        |      A3B3:          A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0    [=] 3: q~>p   =0 = 4:~q=>~p  =0
A:  1: CH=>P  =0 = 2:~CH~>~P=0    [=] 3: P~>CH  =0 = 4:~P=>~CH =0
A’: 1: p~~>~q =1 =                [=]              = 4:~q~~>p  =1                   
A’: 1: CH~~>~P=1 =                [=]              = 4:~P~~>CH =1                   
       ##             ##           |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1    [=] 3: q=>p   =1 = 4:~q~>~p  =1
B:  1: CH~>P  =1 = 2:~CH=>~P=1    [=] 3: P=>CH  =1 = 4:~P~>~CH =1
B’:              = 2:~p~~>q =0    [=] 3: q~~>~p =0
B’:              = 2:~CH~~>P=0    [=] 3: P~~>~CH=0
Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1:
Co się stanie jeśli zajdzie p?
p|~>q  = ~(A1: p=>q) * (B1: p~>q) - zapis formalny
CH|~>P = ~(A1: CH=>P)* (B1: CH~>P) - zapis aktualny
A2B2:
Co się stanie jeśli zajdzie ~p?
~p|=>~q  = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny
~CH|=>~P = ~(A2:~CH~>~P)*(B2:~CH=>~P) - zapis aktualny

Układ równań logicznych jest przemienny.
Stąd mamy tożsame logicznie równanie operatora implikacji prostej ~p||=>~q.
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:
Co się stanie jeśli zajdzie ~p?
~p|=>~q  = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny
~CH|=>~P = ~(A2:~CH~>~P)*(B2:~CH=>~P) - zapis aktualny
A1B1:
Co się stanie jeśli zajdzie p?
p|~>q  = ~(A1: p=>q) * (B1: p~>q) - zapis formalny
CH|~>P = ~(A1: CH=>P)* (B1: CH~>P) - zapis aktualny

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Analiza matematyczna operatora implikacji prostej ~p||=>~q zdefiniowanego tabelą T3.

Operator logiczny implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to odpowiedź na dwa pytania A2B2 i A1B1:

A2B2.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH)?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem.
Sprawdzenie:
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Niemożliwe jest (=0) zdarzenie ~~>: nie ma chmur (~CH=1) i pada (P=1)

A1B1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro będzie pochmurno (CH=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
To samo w zapisie formalnym (na mocy prawa śfinii):
p~>q =1
Chmury (CH=1) są konieczne ~> by jutro padało (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P - prawo Kubusia w zapisie aktualnym
B1: p~>q = B2: ~p=>~q =1 - prawo Kubusia w zapisie formalnym

LUB

A1: CH=>P =0
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1 musi być prawdą.
Sprawdzenie:
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
To samo w zapisie formalnym:
p~~>~q = p*~q =1
Możliwe jest (=1) zdarzenie ~~>: są chmury (CH=1) i nie pada (~P=1)

Jak łatwo zauważyć zostałem leniwcem, czyli skopiowałem analizę matematyczną tabeli T3 zamieszczoną w punkcie 4.8.2 w odwrotnej kolejności, najpierw odpowiedź na pytanie A2B2 a następnie odpowiedź na pytanie A1B1.

To jest praktycznym dowodem zachodzącej to tożsamości logicznej:
A2B2: ~CH|=>~P = A1B1: CH|~>P

Podsumowanie:
Istotą operatora implikacji prostej ~CH||=>~P jest gwarancja matematyczna po stronie ~CH (brak chmur) oraz najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie CH (są chmury).

Doskonale widać, że szczegółowa analiza operatora implikacji odwrotnej CH||~>P w logice dodatniej (bo P) poczyniona w poprzednim punkcie jest w 100% tożsama ze szczegółową analizą implikacji prostej ~CH||=>~P w logice ujemnej (bo ~P) przedstawioną w niniejszym punkcie, bowiem zdania z obu tych analiz możemy wypowiadać w dowolnej kolejności.

Potwierdza to udowodnioną wyżej tożsamość operatorów logicznych:
CH||~>P = ~CH||=>~P
to samo w zapisie formalnym:
p||~>q = ~p||=>~q

6.3 Przykład operatora implikacji odwrotnej A||~>S w zdarzeniach

Sterowanie żarówką S przez różne zespoły przycisków to najprostszy sposób by zrozumieć algebrę Kubusia na poziomie I klasy LO.

Przypomnijmy sobie elementarz algebry Kubusia.

Elementarne spójniki implikacyjne w zdarzeniach to:
1.
Definicja zdarzenia możliwego ~~>:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
inaczej:
p~~>q = p*q =0 - gdy nie jest możliwe (=0) jednoczesne zajście zdarzeń p i q
2.
Definicja warunku wystarczającego => w zdarzeniach:
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p wymusza => zajście zdarzenia q
p=>q =1
inaczej:
p=>q =0
3.
Definicja warunku koniecznego ~> w zbiorach:
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q.
p~>q =1
Inaczej:
p~>q =0

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q.

Niech będzie dany schemat elektryczny:
Kod:

S2 Schemat 2
             S               W            A
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------


Zadajmy sobie dwa podstawowe pytania:
A1.
Czy wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S?

Odpowiedź:
Nie, bo nie zawsze gdy wciśniemy przycisk A żarówka zaświeci się.
Żarówka zaświeci się wtedy i tylko wtedy gdy dodatkowo przycisk W będzie wciśnięty.
Zauważmy, że pytanie A1 nie dotyczy przycisku W.
Przycisk W tu jest zmienną wolną którą możemy zastać w dowolnej pozycji W=x gdzie x={0,1}
Stąd mamy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =0
Wciśnięcie przycisku A nie jest (=0) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A nie daje nam (=0) gwarancji matematycznej => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

B1.
Czy wciśnięcie przycisku A jest konieczne ~> dla świecenia żarówki S?

Odpowiedź:
Tak
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1 (przycisk wciśnięty).
Stąd mamy:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Przyjmijmy zdanie B1 za punkt odniesienia:
p=>q =1 - na mocy prawa śfinii
Nasz punkt odniesienia to:
p=A (przycisk A wciśnięty)
q=S (żarówka świeci się)
Wciśnięcie przycisku A (A=1) jest (=1) konieczne ~> dla świecenia się żarówki S (S=1).
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1
cnd

Definicja podstawowa implikacji odwrotnej A|~>S:
Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =0 - wciśnięcie przycisku A nie jest (=0) wystarczające => dla świecenia się żarówki S
##
B1: A~>S =1 - wciśnięcie przycisku A jest (=1) konieczne ~> dla świecenia żarówki S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 = 1*1 =1

Podstawmy to do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T3
Analiza matematyczna zdania:
Jeśli przycisk A jest wciśnięty to żarówka może ~> się świecić
A~>S=1 - wciśnięcie A jest konieczne ~> dla świecenia S
Punkt odniesienia na mocy prawa śfinii to:
p=>q =1
Gdzie:
p=A (przycisk)
q=S (żarówka)
       A1B1:          A2B2:      |     A3B3:          A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0  [=] 3: q~>p   =0 = 4:~q=>~p =0
A:  1: A=>S   =0 = 2:~A~>~S =0  [=] 3: S~>A   =0 = 4:~S=>~A =0
A’: 1: p~~>~q =1 =              [=]              = 4:~q~~>p =1                   
A’: 1: A~~>~S =1 =              [=]              = 4:~S~~>A =1                   
       ##             ##         |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1  [=] 3: q=>p   =1 = 4:~q~>~p =1
B:  1: A~>S   =1 = 2:~A=>~S =1  [=] 3: S=>A   =1 = 4:~S~>~A =1
B’:              = 2:~p~~>q =0  [=] 3: q~~>~p =0
B’:              = 2:~A~~>S =0  [=] 3: S~~>~A =0
Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1:
Co się stanie jeśli przycisk A będzie wciśnięty (A=1)?
p|~>q = ~(A1: p=>q)* (B1: p~>q) - zapis formalny
A|~>S = ~(A1: A=>S)* (B1: A~>S) - zapis aktualny
A2B2:
Co się stanie jeśli przycisk A nie będzie wciśnięty (~A=1)?
~p|=>~q = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny
~A|=>~S = ~(A2:~A~>~S)*(B2:~A=>~S) - zapis aktualny

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator implikacji odwrotnej A||~>S w logice dodatniej (bo S) to układ równań logicznych:
A1B1:
Co się stanie jeśli przycisk A będzie wciśnięty (A=1)?
A|~>S = ~(A1: A=>S)* (B1: A~>S) - zapis aktualny
A2B2:
Co się stanie jeśli przycisk A nie będzie wciśnięty (~A=1)?
~A|=>~S = ~(A2:~A~>~S)*(B2:~A=>~S) - zapis aktualny

Innymi słowy:
Operator implikacji odwrotnej A||~>S to odpowiedź na dwa pytania A1B1 i A2B2:

A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli przycisk A będzie wciśnięty (A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (S=1)
A~>S =1
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1) bo jak przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S

Analizę matematyczną zaczynamy od zdania B1 zatem na mocy prawa śfinii zapis formalny to:
B1: p~>q =1
Punkt odniesienia na mocy prawa śfinii:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (~S=1)
A~~>~S = A*~S =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna W ustawiona jest na W=1.

A2B2
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Odpowiedź mamy w kolumnie A2B2:
Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy gwarancję matematyczną => iż żarówka nie będzie się świecić - mówi o tym zdanie B2.

B2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to na 100% => żarówka nie będzie się świecić (~S=1)
~A=>~S =1
Brak wciśnięcie przycisku A (~A=1) daje nam gwarancję matematyczną => iż żarówka nie będzie się świecić (~S=1), bo przyciski A i W połączone są szeregowo.
Stan przycisku W jest tu bez znaczenia W=x gdzie: x={0,1}
Zachodzi tożsamość pojęć:
Gwarancja matematyczna => = Warunek wystarczający =>
Prawdziwość warunku wystarczającego => B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie).

B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Zauważmy, że przyciski A i W połączone są szeregowo, z czego wynika że:
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Stan zmiennej wolnej W jest tu bez znaczenia: W=x gdzie: x={0,1}

Podsumowanie:
Istotą operatora implikacji odwrotnej A||~>S jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie wciśniętego przycisku A (zdania B1 i A1”), oraz gwarancja matematyczna => po stronie nie wciśniętego przycisku A (zdanie B2).
Doskonale to widać w powyższej analizie.


6.3.1 Wisienka na torcie w operatorze implikacji odwrotnej A||~>S

Wisienką na torcie w implikacji odwrotnej A||~>S jest podstawowy schemat układu realizującego implikację odwrotną A|~>S w zdarzeniach zrealizowany przy pomocy zespołu przycisków (wejście) i żarówki (wyjście).
Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: przycisk A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S2, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S2, tylko nie mają do niego dostępu (zmienna wolna). Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.
Punktem odniesienia na schemacie S2 jest Jaś siedzący w pokoju A, bowiem w równaniu opisującym układ występuje wyłącznie przycisk A - Jaś nie widzi przycisku W.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S2 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji odwrotnej A|~>S

6.4 Przykład operatora implikacji odwrotnej P2||~>P8 w zbiorach

Twierdzenia matematyczne operują wyłącznie na zbiorach nieskończonych, logika matematyczna jest tu identyczna jak opisana wyżej banalna logika zdarzeń, jednak zbiory nieskończone z oczywistych powodów są trudniejsze do analizy.
Niemniej jednak możliwe są operacje na zbiorach nieskończonych zrozumiałe dla ucznia I klasy LO i do takich zbiorów ograniczymy się w wykładzie.

Definicja twierdzenia matematycznego:
Dowolne twierdzenie matematyczne prawdziwe to spełniony warunek wystarczający =>:
p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
inaczej:
p=>q =0 - twierdzenie matematyczne jest fałszywe.
Koniec i kropka, nie ma żadnych innych twierdzeń matematycznych.

Przypomnijmy sobie elementarz algebry Kubusia dla zbiorów.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Elementarne spójniki implikacyjne w zbiorach to:
1.
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy istnieje (=1) wspólny element zbiorów p i q
inaczej:
p~~>q = p*q =0 - gdy nie istnieje (=0) wspólny element zbiorów p i q (zbiory rozłączne)
2.
Definicja warunku wystarczającego => w zbiorach:
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q.
p=>q =1 - warunek wystarczający => spełniony, gdy zbiór p jest podzbiorem => zbioru q
inaczej:
p=>q =0
3.
Definicja warunku koniecznego ~> w zbiorach:
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
p~>q =1 - warunek konieczny ~> spełniony, gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów ~~>:
p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q.

Zadanie matematyczne w I klasie LO w 100-milowym lesie:
Dane jest zdanie:
W.
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
Polecenia:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę szczegółową zlokalizowanego operatora logicznego.

Rozwiązanie Jasia (I klasa LO):
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p
      ##        ##           ##        ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Tabelę T1 każdy matematyk musi znać na pamięć jak tabliczkę mnożenia do 100, bez tej znajomości może zapomnieć o jakiejkolwiek, poprawnej logice matematycznej.

Na początek sprawdzamy prawo Kobry:
WK.
Jeśli dowolna liczba jest podzielna przez 2 to może ~~> być podzielna przez 8
P2~~>P8 = P2*P8 =1
Definicja elementu wspólnego ~~> zbiorów jest spełniona bo zbiory P2=[2,4,6,8..] i P8=[8,16,24..] mają co najmniej jeden element wspólny np. 8.
cnd
To samo zdanie w zapisie formalnym:
p~~>q = p*q =1 - na mocy prawa śfinii
Punkt odniesienia na mocy praw śfinii to:
p=P2 - zbiór liczb podzielnych przez 2
q=P8 - zbiór liczb podzielnych przez 8

Sprawdźmy czy w zdaniu WK spełniony jest warunek wystarczający =>:
A1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to na 100% => jest podzielna przez 8 (P8=1)
P2=>P8 =0
to samo w zapisie formalnym:
p=>q =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór P2=[2,4,6,8..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8…]
Indeksowanie A1 wymusza tu tabela T1.
Zauważmy bowiem, że w kolumnach A1B1 i A2B2 (tylko te nas interesują na mocy prawa śfinii) warunek wystarczający p=>q mamy wyłącznie na pozycji A1.
cnd

Aby stwierdzić w skład jakiego operatora logicznego wchodzi nasze zdanie W musimy zbadać prawdziwość/fałszywość zdania A1 kodowanego warunkiem koniecznym ~>
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Indeksowanie B1 wynika tu z tabeli T1,

Najprostszy warunek wystarczający zawsze łatwiej się dowodzi.
Zastosujmy zatem prawo Tygryska:
B1: p~>q = B3: q=>p - zapis formalny
B1: P2~>P8 = B3: P8=>P2 - zapis aktualny
Dowodzimy prawdziwości B3.
B3.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…]
Dowód przez pokazanie 😊
cnd

Definicja tożsamości logicznej:
Prawo Tygryska:
B1: P2~>P8 = B3: P8=>P2
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Oczywistym jest że w prawie Tygryska łatwiej dowodzi się warunek wystarczający B3:
B3: P8=>P2 =1
Po udowodnieniu, na mocy prawa Tygryska, mamy gwarancję matematyczną prawdziwości warunku koniecznego B1.
B1: P2~>P8 =1

Mamy nasze zdanie W.
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
P2~~>P8 = P2*P8 =1 bo 8

Udowodniliśmy wyżej, że zdanie to jest częścią implikacji odwrotnej P2|~>P8:
Implikacja odwrotna P2|~>P8 w logice dodatniej (bo P8) to zachodzenie wyłącznie warunku koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: P2=>P8 =0 - podzielność liczby przez 2 nie jest (=0) wystarczająca => dla jej podzielności przez 8
B1: P2~>P8=1 - podzielność liczby przez 2 jest (=1) konieczna ~> dla jej podzielności przez 8
P2|~>P8 = ~(A1: P2=>P8)*(B1: ~P2=>~P8) = ~(0)*1 =1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy T3.
Kod:

T3
Analiza matematyczna zdania:
Jeśli liczba jest podzielna przez 2 to może ~~> być podzielna przez 8
P2~~>P8=P2*P8=1 bo 8
Punkt odniesienia na mocy prawa śfinii to:
p~~>q = p*q =1
Gdzie:
p=P2 - zbiór liczb podzielnych przez 2
q=P8 - zbiór liczba podzielnych przez 8
       A1B1:           A2B2:      |      A3B3:          A4B4:
A:  1: p=>q   = 0 = 2:~p~>~q  =0 [=] 3: q~>p    =0 = 4:~q=>~p  =0
A:  1: P2=>P8  =0 = 2:~P2~>~P8=0 [=] 3: P8~>P2  =0 = 4:~P8=>~P2=0
A’: 1: p~~>~q  =1 =              [=]               = 4:~q~~>p  =1                   
A’: 1: P2~~>~P8=1 =              [=]               = 4:~P8~~>P2=1                   
       ##             ##          |     ##            ##
B:  1: p~>q    =1 = 2:~p=>~q  =1 [=] 3: q=>p    =1 = 4:~q~>~p  =1
B:  1: P2~>P8  =1 = 2:~P2=>~P8=1 [=] 3: P8=>P2  =1 = 4:~P8~>~P2=1
B’:               = 2:~p~~>q  =0 [=] 3: q~~>~p  =0
B’:               = 2:~P2~~>P8=0 [=] 3: P8~~>~P2=0
Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q
Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1:
Co się stanie jeśli zajdzie p?
p|~>q  = ~(A1: p=>q) * (B1: p~>q) - zapis formalny
P2|~>P8 = ~(A1: P2=>P8)* (B1: P2~>P8) - zapis aktualny
A2B2:
Co się stanie jeśli zajdzie ~p?
~p|=>~q  = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny
~P2|=>~P8 = ~(A2:~P2~>~P8)*(B2:~P2=>~P8) - zapis aktualny
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Weźmy zdanie B1.
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
zapis formalny:
p~>q =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
W poprzedniku tu mamy zbiór liczb podzielnych przez 2:
P2=[2,4,6,8..]
W następniku mamy zbiór liczb podzielnych przez 8:
P8=[8,16,24..]
Przyjmijmy wspólną dziedzinę:
LN=1,2,3,4,5,6,7,8,9..] - zbiór wszystkich liczb naturalnych
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny:
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór liczb nieparzystych)
~P8=[LN-P8] = [1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1:
Co się stanie jeśli zajdzie p?
p|~>q = ~(A1: p=>q) * (B1: p~>q) - zapis formalny
A2B2:
Co się stanie jeśli zajdzie ~p?
~p|=>~q = ~(A2:~p~>~q)*(B2:~p=>~q) - zapis formalny

Innymi słowy w zapisach aktualnych:
Operator implikacji odwrotnej P2||~>P8 to odpowiedź na dwa pytania A1B1 i A2B2:

A1B1:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielną przez 2 (P2=1)?


Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielna przez 2 (P2=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
zapis formalny:
p~>q =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

LUB

A1: P2=>P8=0
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1 mus być prawdą.
A1’
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P2~~>~P8=P2*~P8 =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Definicja elementu wspólnego zbiorów ~~> jest (=1) spełniona bo zbiory P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6..9..] mają co najmniej jeden element wspólny np. 2
W zdaniu A1’ nie zachodzi ani warunek wystarczający =>, ani tez konieczny ~> i tego faktu nie musimy dowodzić na mocy algebry Kubusia.

A2B2:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 (~P2=1)?


Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 to mamy gwarancję matematyczną => iż ta liczba nie będzie podzielna przez 8 - mówi o tym zdanie B2.

B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
Niepodzielność dowolnej liczby przez 2 wystarcza => dla jej niepodzielności przez 8 bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]
Oczywiście ten fakt dowodzimy korzystając z prawa kontrapozycji:
B2: ~p=>~q = B3: q=>p - zapis formalny
B2: ~P2=>~P8 = B3: P8=>P2 - zapis aktualny
Udowodnienie prawdziwości B3: P8=>P2 =1 na mocy prawa kontrapozycji gwarantuje prawdziwość zdania B2:~P2=>~P8 =1

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem.
B2’
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8=~P2*P8 =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16, 24..]
Dowolny zbiór liczb nieparzystych jest rozłączny z dowolnym zbiorem liczb parzystych,
cnd

Podsumowanie:
Cechą charakterystyczną operatora implikacji odwrotnej P2||~>P8 jest najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie liczb podzielnych przez 2 (zdania B1 i A1’) oraz gwarancja matematyczna => po stronie liczb niepodzielnych przez 2 (zdanie B2)
Doskonale to widać w analizie wyżej.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 11:37, 30 Kwi 2021    Temat postu:

30-04-2021
Ta wersja punktu 4.0 idzie do poprawek, nie dlatego iż cokolwiek jest tu źle, ale zamierzam to samo napisać lepiej.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-w-finalna,18263.html#577211

Algebra Kubusia - wykład podstawowy
4.0 Teoria rachunku zbiorów i zdarzeń

Spis treści
4.0 Teoria rachunku zbiorów i zdarzeń 1
4.1 Podstawowe spójniki implikacyjne w zbiorach 1
4.1.1 Definicja kontrprzykładu w zbiorach 2
4.1.2 Prawa Kobry dla zbiorów 3
4.2 Podstawowe spójniki implikacyjne w zdarzeniach 3
4.2.1 Definicja kontrprzykładu w zdarzeniach 4
4.2.2 Prawo Kobry dla zdarzeń 4
4.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 4
4.4 Matematyczne związki warunków wystarczających => i koniecznych ~> 8
4.5 Porównanie implikacji prostej p|=>q i odwrotnej p|~>q 10
4.5.1 Dowód wewnętrznej sprzeczności ziemskiej algebry Boole’a 13
4.6 Prawo śfinii 15
4.7 Skrócone definicje operatorów implikacyjnych 15



4.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

4.1 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q.

I.
Definicja elementu wspólnego ~~> zbiorów:

Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory p i q są rozłączne i nieskończone to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

II.
Definicja warunku wystarczającego => w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.1.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

4.1.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem => samego siebie:
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

Zbiór pusty jest zbiorem zewnętrznym w stosunku do dowolnego zbioru niepustego.
Wynika to z definicji zbioru pustego [] w algebrze Kubusia (pkt. 3.0)


4.2 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.2.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

4.2.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)


4.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja znaczka różne # dla funkcji logicznych:
Dwie funkcje logiczne są różne w znaczeniu znaczka # wtedy i tylko wtedy gdy jedna z nich jest zaprzeczeniem (~) drugiej
Przykład:
A1: Y=(p=>q)=~p*q # A1N: ~Y=~(p=>q)=p+~q

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej (szczegóły w pkt. 2.1)

Weźmy nasze funkcje logiczne A1 i B1:
Kod:

A1:  Y= (p=>q)=~p+q  ##  B1:  Y= (p~>q)=p+~q 
     #                        #
A1N:~Y=~(p=>q)=p*~q  ##  B1N:~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
A1:  Y= (p=>q)=~p+q - funkcja logiczna A1 w logice dodatniej (bo Y)
A1N:~Y=~(p=>q)=p*~q - funkcja logiczna A1 w logice ujemnej (bo ~Y)

Doskonale widać, że definicje znaczków # i ## są tu spełnione.

Kod:

T1
Definicja warunku wystarczającego =>
        Y=
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
        Y=
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
        Y=
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

##
Kod:

T4
Definicja spójnika “i”(*)
        Y=
   p  q p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 0  0
D: 0* 1  0
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „i”(*) w logice jedynek:
p*q=1 <=> p=1 i q=1
inaczej:
p*q=0
Definicja spójnika „i”(*) w logice zer:
p*q=0 <=> p=0 lub q=0
Inaczej:
p*q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Dowód iż funkcje logiczne z tabel T1, T2, T3 i T4 spełniają definicję znaczka różne na mocy definicji ##.
Kod:

T1:  Y= (p=>q)=~p+q  ## T2:  Y =(p~>q)=p+~q ## T3:  Y= p+q  ## T4:  Y=p*q
     #                       #                      #               #
T1N:~Y=~(p=>q)= p*~q ## T2N:~Y=~(p~>q)=~p*q ## T3N:~Y=~p*~q ## T4N:~Y=~p+~q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
T1:  Y= (p=>q)=~p+q - funkcja logiczna T1 w logice dodatniej (bo Y)
T1N:~Y=~(p=>q)=p*~q - funkcja logiczna T1 w logice ujemnej (bo ~Y)

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Wyprowadźmy w rachunku zero-jedynkowym matematyczne związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q # ~(p=>q)=p*~q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =0    =0        =0    =0        =0       #    =1
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =1    =1        =1    =1        =1       #    =0
                1     2         3     4         5             6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q

##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q # ~(p~>q)=~p*q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =1    =1        =1    =1        =1       #    =0
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =0    =0        =0    =0        =0       #    =1
                1     2         3     4         5
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Y = (p=>q) = ~p+q ## Y=(p~>q) =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

Prawo Kubusia:
A1: p=>q = A2:~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż w zdaniu A1 spełniony jest warunek wystarczający =>:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
jest tożsame z udowodnieniem iż w zdaniu A2 spełniony jest warunek konieczny ~>:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
(albo odwrotnie)

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie (P) jest warunkiem wystarczającym => do tego aby było pochmurno (CH), bo zawsze gdy pada (P), jest pochmurno (CH)

Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH
Prawdziwość zdania A1 wymusza prawdziwość zdania A2, z czego wynika, że prawdziwości zdania A2 nie musimy dowodzić.
A2.
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
~P~>~CH =1
Brak opadów (~P) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH), bo jak pada (P) to na 100% => są chmury (CH)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

4.4 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

4.5 Porównanie implikacji prostej p|=>q i odwrotnej p|~>q

Poznajmy kluczowe definicje implikacji prostej p|=>q i odwrotnej p|~>q

Podstawowa definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IP: Implikacja prosta p|=>q w logice dodatniej (bo q)
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=1 - zajście p jest (=1) wystarczające dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
      ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):[/b]
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):[/b]
Y = (p~>q) =p+~q
stąd mamy:
Wyprowadzenie definicji implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
IP:
Kolumna A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
A1B1: p|=>q = ~p*q

Porównajmy.

IP: Implikacja prosta p|=>q
Definicja warunku wystarczającego p=>q:
Y = (p=>q) =~p+q
##
Definicja implikacji prostej p|=>q:
Y = (p|=>q) = ~p*q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Podstawowa definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IO: Implikacja odwrotna p|~>q w logice dodatniej (bo q)
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q w logice dodatniej (bo q)
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):[/b]
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):[/b]
Y = (p~>q) =p+~q
stąd mamy:

Wyprowadzenie definicji implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
IO:
Kolumna A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
A1B1: p|~>q = p*~q

Porównajmy:

IO: Implikacja odwrotna p|~>q
Definicja warunku koniecznego p~>q:
Y = (p~>q) =p+~q
##
Definicja implikacji odwrotnej p|~>q:
Y = (p|~>q) = p*~q
Gdzie:
## - różne na mocy definicji funkcji logicznych

W tabelach IP (implikacja prosta) i IO (implikacja odwrotna) p i q muszą być tymi samymi p i q inaczej popełniamy błąd podstawienia.
Na mocy powyższego zapisujemy:

IP: Implikacja prosta p|=>q
Definicja warunku wystarczającego p=>q:
Y = (p=>q) =~p+q
##
Definicja implikacji prostej p|=>q:
Y = (p|=>q) = ~p*q

IO Implikacja odwrotna p|~>q
Definicja warunku koniecznego p~>q:
Y = (p~>q) =p+~q
##
Definicja implikacji odwrotnej p|~>q:
Y = (p|~>q) = p*~q

Doskonale widać, że między implikacją prostą IP a implikacją odwrotną IO zachodzi relacja matematyczna:
## - różne na mocy definicji funkcji logicznych

Dowód formalny:
Kod:

IPIO:
 WW:               IP:                WK:               IO:
 Y=(p=>q)=~p+q  ## Y=(p|=>q)=~p*q  ## Y=(p~>q)=p+~q  ## Y=(p|~>q)=p*~q
 #                 #                  #                 #
 WWN:              IPN:               WKN:              ION:
~Y=~(p=>q)=p*~q ##~Y=~(p|=>q)=p+~q ##~Y=~(p~>q)=~p*q ##~Y=~(p|~>q)=~p+q
Gdzie:
WW - warunek wystarczający (WWN - negacja WW)
IP - implikacja prosta (IPN - negacja IP)
WK - warunek konieczny (WKN - negacja WK)
IO - implikacja odwrotna (ION - negacja IO)
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Doskonale widać, że definicja znaczka różna na mocy definicji ## dla funkcji logicznych w tabeli IPIO spełniona jest perfekcyjnie.

4.5.1 Dowód wewnętrznej sprzeczności ziemskiej algebry Boole’a

Biedni ziemscy matematycy nie odróżniają funkcji logicznej w logice dodatniej (bo Y) od funkcji logicznej w logice ujemnej (bo ~Y).
W algebra Boole’a ziemian wszystkie funkcje logiczne zapisywane są wyłącznie w logice dodatniej (bo Y).
Zapiszmy zatem w tabeli IPIO wszystkie funkcje w logice dodatniej (bo Y):
Kod:

IPIOZ: - matematyczna głupota ziemskich matematyków
 WW:               IP:                WK:               IO:
 Y=(p=>q)=~p+q  ## Y=(p|=>q)=~p*q  ## Y=(p~>q)=p+~q  ## Y=(p|~>q)=p*~q
 #                 #                  #                 #
 WWN:              IPN:               WKN:              ION:
 Y=~(p=>q)=p*~q ## Y=~(p|=>q)=p+~q ## Y=~(p~>q)=~p*q ## Y=~(p|~>q)=~p+q
Gdzie:
WW - warunek wystarczający (WWN - negacja WW)
IP - implikacja prosta (IPN - negacja IP)
WK - warunek konieczny (WKN - negacja WK)
IO - implikacja odwrotna (ION - negacja IO)
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Jak widzimy, w tym momencie algebra Boole’a ziemskich matematyków leży, kwiczy i błaga o litość - jest wewnętrznie sprzeczna.

Dowód:
Bez logiki dodatniej (bo Y) i ujemnej (bo ~Y) nie jest spełniona definicja znaczka:
## - różne na mocy definicji dla funkcji logicznych

Przykład z tabeli IPIOZ:
WW: Y=(p=>q)=~p+q [=] ION: Y=~(p|~>q) =~p+q
Gdzie:
[=] - tożsamość logiczna
Funkcja logiczna WW jest (=1) tożsama [=] z funkcją logiczną ION

Gdy tymczasem w poprawnej algebrze Boole’a według tabeli IPIO powinno być:
WW: Y=(p=>q)=~p+q ## ION: ~Y=~(p|~>q) = ~p+q
Gdzie:
## - różne na mocy definicji funkcji logicznych
Funkcja logiczna WW nie jest (=0) tożsama z funkcją logiczną ION

Twierdzenie masakrujące ziemską algebrę Boole’a:
Poprawna algebra Boole’a musi widzieć funkcje logiczne zarówno w logice dodatniej (bo Y) jak i w logice ujemnej (bo ~Y), inaczej jest wewnętrznie sprzeczna.
Wniosek:
Ziemska algebra Boole’a, która nie widzi funkcji logicznych w logice ujemnej (bo ~Y) jest wewnętrznie sprzeczna
cnd

Uwagi:

I.
Ziemski matematyk który będzie twierdził iż funkcje logiczne algebry Boole’a to nie jest algebra Boole’a powinien spalić się ze wstydu … i wziąć zimny prysznic.
1: Y=p+q

II.
Ziemski matematyk który będzie twierdził, iż dowolnej funkcji logicznej nie wolno dwustronnie negować powinien spalić się ze wstydu … albo wziąć zimny prysznic (do wyboru)
1: Y=p+q
Negujemy dwustronnie:
2: ~Y=~(p+q)
2: ~Y=~p*~q - na mocy prawa De Morgana
To jest niewyobrażalne, jak ziemscy matematycy, mając 2500 lat czasu (od Sokratesa) zdołali uniknąć odkrycia logiki dodatniej (bo Y) i ujemnej (bo ~Y) jak na powyższym przykładzie znanym każdemu 5-cio latkowi, ekspertowi algebry Kubusia ( i Boole’a oczywiście).

Dowód:
Pani w przedszkolu:
Jutro pójdziemy do kina (K) lub do teatru (T)
Y=K+T
Zuzia do Jasia (oboje po 5 wiosenek):
Czy wiesz kiedy pani jutro skłamie?
Jaś:
Oczywiście że wiem, przechodzę do logiki ujemnej (bo ~Y) i mam odpowiedź:
~Y=~K*~T
Czytamy:
Pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K) i nie pójdziemy do teatru (~T)
~Y=~K*~T
Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani nie dotrzyma słowa (= pani skłamie)

Niestety, o powyższych banałach, czyli logice dodatniej (bo Y) i ujemnej (bo ~Y) w banalnym zastosowaniu jak wyżej najwięksi ziemscy matematycy nie mają najmniejszego pojęcia.
Dowód:
Nie ma tego typu przykładów zastosowania logiki dodatniej (bo Y) i ujemnej (bo ~Y) w żadnym podręczniku matematyki, ani nawet w żadnym miejscu w Internecie … z wyjątkiem forum śfinia oczywiście.

4.6 Prawo śfinii

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q.

4.7 Skrócone definicje operatorów implikacyjnych

1.
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
p|=>q=(A1: p=>q)*~(B1: p~>q)
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
p|=>q=(A1: p=>q)*~(B1: p~>q)
Kod:

IP: Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


2.
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznyego ~> między tymi samymi punktami i w tym samym kierunku
Kolumna A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Kod:

IO: Tabela prawdy implikacji odwrotnej p|~>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia



3.
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR: Tabela prawdy równoważności p<=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.
Definicja chaosu p|~~>q:

Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
Kolumna A1B1:
A1: p=>q =0 - p nie jest (=0) wystraczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)
Kod:

CH: Tabela prawdy chaosu p|~~>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Równanie operatora chaosu p||~~>q:
A1B1: A2B2
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(B1:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q =~(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~~>~q=~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q=~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|~~>q =~(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
[/code]
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 25851
Przeczytał: 18 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 8:38, 09 Maj 2021    Temat postu:

2021-05-09
Ten rozdział w finalnej wersji będzie zmieniony

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-w-finalna,18263.html#581665

Algebra Kubusia - wykład podstawowy
8.0 Spójnik „albo”($) p$q i operator „albo”(|$) p|$q


Spis treści
8.0 Spójnik „albo”($) p$q i operator „albo”(|$) p|$q 1
8.1 Armagedon ziemskiej algebry Boole’a w temacie spójników „albo”($) i p<=>q 5
8.2 Spójnik „albo” p$q 7
8.2.1 Spójnik „albo”($) w logice dodatniej p$q i ujemnej ~p$~q 9
8.2.2 Spójnik „albo” p$q jako negacja zbiorów/pojęć 14
8.3 Operator „albo” p|$q 18
8.4 Operator „albo” q|$p 21
8.5 Skąd bierze się zero-jedynkowa definicja spójnika „albo” p$q? 23


8.0 Spójnik „albo”($) p$q i operator „albo”(|$) p|$q

Spójnik „albo”($) to spójnik kompletnie przez ziemskich matematyków nierozumiany.

Dowód:
Który z ziemskich matematyków wie, że spójnik „albo”($) to szczególny rodzaj równoważności o definicji:
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Definicja spójnika równoważności p<=>q:
Równoważność p<=>q to jednoczesne zajście warunku koniecznego ~> i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame (p=q) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

Definicja równoważności p<=>q definiuje tożsamość zbiorów (p=q), natomiast przedstawiona niżej definicja spójnika „albo”($) definiuje negację zbiorów (p=~q) - różnica jest więc fundamentalna.

Definicja spójnika „albo”($):
Spójnik „albo”($) to jednoczesne zajście warunku koniecznego ~> i wystarczającego => między tymi samymi punktami i w tym samym kierunku przy zanegowanym q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Definicja negacji zbiorów p=~q:
Zbiór p jest negacją zbioru q (p=~q) wtedy i tylko wtedy gdy spełniona jest definicja spójnika „albo” p$q:
p=~q <=> (A1: p=>~q)*(B3: ~q=>p) = p$q

Lewą stronę spójnika „albo”($) czytamy:
Zajdzie p „albo”($) zajdzie q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1 =1
Przykład 1:
Dowolny człowiek jest mężczyzną (M=1) albo kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1

Natomiast matematycznie tożsamą:
Prawą stronę definicji spójnika „albo”($) czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia ~q
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1
Przykład 2:
Bycie mężczyzną (M=1) jest konieczne ~> i wystarczające => do tego, aby nie być kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1

Oczywistym jest, że powyższe przykłady 1 i 2 są poprawne w dziedzinie:
C (człowiek) = M (mężczyzna) + K (kobieta)
Innymi słowy:
Zbiór wszystkich ludzi C (człowiek) jest sumą logiczną (+) zbiorów mężczyzn M i kobiet K.
C = M+K
Obliczenie przeczeń zbiorów rozumianych jako ich uzupełnień do dziedziny
~M = [C-M] = [M+K-M] =K
~K = [C-K] = [M+K-K] =M
Stąd mamy następujące tożsamości zbiorów:
M=~(K) - zbiór mężczyzn (M) to zaprzeczenie (~) zbioru kobiet (K) w dziedzinie C
K = ~(M) - zbiór kobiet (K) to zaprzeczenie (~) zbioru mężczyzn (M) w dziedzinie C

Graficzne związki matematyczne między zbiorami M (mężczyzna) i K (kobieta) można przedstawić następująco:
Kod:

Graficzna interpretacja spójnika „albo” M(mężczyzna) $ K(kobieta)
--------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” M$K w zbiorach               |
| Dziedzina minimalna:                                             |
| C=M+K - dziedzina C(człowiek) to suma logiczna zbiorów M+K       |
--------------------------------------------------------------------
| M - zbiór M(mężczyzn)          | K - zbiór K(kobiet)             |
| M$K = (A1: M=>~K)*(B1: M~>~K)  | K$M = (A4: K=>~M)*(B4: K~>~M)   |
| M$K definiuje:                 | K$M definiuje:                  |
| M=~(K)- zbiór M jest negacją K | K=~(M) - zbiór K jest negacją M |
| M=~K - zapis tożsamy           | K=~M - zapis tożsamy            |
| W zbiorach zachodzi również:   | W zbiorach zachodzi również:    |
| M=~(K)=~(~M) - bo K=~M         | K=~(M)=~(~K) - bo M=~K          |
--------------------------------------------------------------------

Dokładnie ta sama tabela w zapisach formalnych (oderwanych od przykładu) dla punktu odniesienia:
p=M (mężczyzna)
q=K (kobieta)
wygląda następująco.
Kod:

Graficzna interpretacja spójnika „albo” p$q
-------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” p$q w zbiorach              |
| Dziedzina minimalna:                                            |
| D=p+q - dziedzina minimalna to suma logiczna zbiorów p+q        |
-------------------------------------------------------------------
| p - zbiór p                   | q - zbiór q                     |
|p$q = (A1: p=>~q)*(B1: p~>~q)  | q$p = (A4: q=>~p)*(B4: q~>~p)   |
|p$q definiuje:                 | q$p definiuje:                  |
|p=~(q)- zbiór p jest negacją q | q=~(p) - zbiór q jest negacją p |
|p=~q - zapis tożsamy           | q=~p - zapis tożsamy            |
|W zbiorach zachodzi również:   |W zbiorach zachodzi również:     |
|p=~(~p) bo q=~p                | q=~(~q) bo p=~q                 |
-------------------------------------------------------------------

Zauważmy, że spójnik „albo”($) definiuje negację zbiorów/pojęć p=~q.

Definicja negacji zbiorów/pojęć p=~q:
Zbiór p jest negacją zbioru q (p=~q) wtedy i tylko wtedy gdy zajście p jest warunkiem koniecznym ~> dla zajścia ~q i jednocześnie zajście p jest warunkiem wystarczającym => dla zajścia ~q
p=~q = (A1: p=>~q)*(B1: p~>~q) = p$q

Dowód:
Definicja spójnika „albo”($):
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1
Podstawmy do definicji spójnika „albo”($) tożsamość:
q=~p
stąd mamy:
p$~p = (A1: p=>~(~p))*(B1: p~>~(~p)) = (A1: p=>p)*(B1: p~>p) =1*1 =1
p$~p = (A1: p=>p)*(B1: p~>p) =1*1 =1
bo:
A1: p=>p =1 - każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: p~>p =1 - każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego

Ziemscy matematycy nie mają bladego pojęcia, iż w logice matematycznej w zbiorach zachodzą tożsamości:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Gdzie:
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+) dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+) dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy tożsamy dowód iż spójnik „albo”($) to w istocie definicja negacji pojęć/zbiorów p=~q.
Definicja spójnika „albo”($):
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1
stąd mamy:
Definicja spójnika „albo”($) w spójnikach „i”(*) i „lub”(+):
p$q = (A1: p=>~q)*(B1: p~>~q) = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = p*~q + ~p*q
p$q = p*~q + ~p*q
Dla q=~p mamy:
p$~p = p*~(~p) + ~p*(~p) = p+~p=1
cnd

Podsumujmy nasze rozważania wyżej.

Definicja spójnika „albo”($):
Spójnik „albo”($) to jednoczesne zajście warunku koniecznego ~> i wystarczającego => między tymi samymi punktami i w tym samym kierunku przy zanegowanym q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Tożsama definicja szersza:
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Spójnik „albo”($) definiuje negację zbiorów/pojęć p=~q.

Definicja negacji zbiorów/pojęć p=~q:
Zbiór p jest negacją zbioru q (p=~q) wtedy i tylko wtedy gdy zajście p jest warunkiem koniecznym ~> dla zajścia ~q i jednocześnie zajście p jest warunkiem wystarczającym => dla zajścia ~q
p=~q = (A1: p=>~q)*(B1: p~>~q) = p$q

Definicja spójnika równoważności p<=>q jest inna i definiuje tożsamość zbiorów/pojęć p=q a nie jak to jest w spójniku „albo”($) negację zbiorów/pojęć p=~q

Definicja spójnika równoważności p<=>q:
Równoważność p<=>q to jednoczesne zajście warunku koniecznego ~> i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame (p=q) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

Rozważmy najszerszą definicję spójnika „albo”($):
p$q = ~(p<=>q) = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Z powyższej tożsamości wynika, że jeśli prawdziwa jest relacja negacji zbiorów p=~q definiowana spójnikiem „albo”($) to dla tej relacji równoważność p<=>q definiująca tożsamość zbiorów p=q musi być fałszem.

Dowód:
Dla relacji negacji zbiorów q=~p definiowanej spójnikiem „albo”($) mamy:
p$~p = ~(p<=>~p) = (A1: p=>p)*(B1: p~>p) =1*1 =1
bo:
p=>p =1 - każdy zbiór/pojęcie jest podzbiorem => siebie samego
p~>p =1 - każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego

Definicja równoważności p<=>q:
p<=>q = (A1: p=>q)*(B1: p~>q)
Sprawdźmy iż w istocie, dla relacji q=~p równoważność p<=>q jest fałszem.
p<=>~p = (A1: p=>~p)*B1: p~>~p) = (A1: ~p)*(B1: p) =~p*p =0
bo:
Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q =p+~q
Stąd mamy:
A1: p=>~p = ~p+~p =~p
B1: p~>~p = p+p =p
cnd

8.1 Armagedon ziemskiej algebry Boole’a w temacie spójników „albo”($) i p<=>q

Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć
Alfred Hitchcock


Ziemska algebra Boole’a akceptuje wyłącznie pięć znaczków:
1 - prawda
0 - fałsz
(~) - negacja
„i”(*) - spójnik „i” z języka potocznego
„lub”(+) - spójnik „lub” z języka potocznego

Ziemska algebra Boole’a akceptuje wyłącznie funkcje logiczne Y w logice dodatniej (bo Y):
Y=f(x)
Przykład:
Y=p+q
Co w logice jedynek (funkcje alternatywno-koniunkcyjne) oznacza:
Y=1 <=> p=1 lub q=1
Ziemski matematyk który będzie twierdził, iż funkcje logiczne algebry Boole’a to nie jest algebra Boole’a powinien skreślić słówko matematyk sprzed swego nazwiska.

W algebrze Boole’a dowolną funkcję logiczną Y wolno nam tylko i wyłącznie dwustronnie zanegować:
~Y=~f(x)
Nasz przykład:
~Y = ~(p+q) = ~p*~q - bo prawo De Morgana
~Y=~p*~q
Co w logice jedynek (funkcje alternatywno-koniunkcyjne) oznacza:
~Y=1 <=> ~p=1 i ~q=1
Ziemski matematyk który będzie twierdził, iż nie wolno dowolnej funkcji logicznej Y dwustronnie negować powinien spalić się ze wstydu i wziąć zimny prysznic.

W celu obalenia ziemskiej algebry Boole’a tzn. wykazania jej wewnętrznej sprzeczności, wyprowadźmy na początek definicje spójników „albo”($) p$q i równoważności p<=>q w spójnikach „i”(*) i „lub”(+).

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p~>q =p+~q

Definicja spójnika „albo”($):
Y = p$q = (A1: p=>~q)*(B1: p~>~q) = (~p+~q)*(p+q)=~p*p + ~p*q ~q*p + ~q*q = p*~q+~p*q
Y = p$q = p*~q+~p*q
Negujemy powyższą funkcję logiczną dwustronnie:
~Y = ~(p$q) = p*q+~p*~q

Definicja spójnika równoważności p<=>q:
Y = p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p +~p*~q + q*p + q*~q = p*q+~p*~q
Y = p<=>q = p*q + ~p*~q
Negujemy powyższą funkcję logiczną dwustronnie:
~Y = ~(p<=>q) = p*~q + ~p*q

Zapiszmy te dwie definicje w tabeli prawdy:
Kod:

T1
Definicja równoważności p<=>q: ## Definicja spójnika „albo”($):
 Y= (p<=>q)=p*q+~p*~q          ##  Y= (p$q)=p*~q+~p*q
 #                             ##  #
~Y=~(p<=>q)=p*~q+~p*q          ## ~Y=~(p$q)=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych


Definicja znaczka różne na mocy definicji funkcji logicznych ##:
Dwie funkcje logiczne są różne na mocy definicji funkcji logicznych ## gdy nie są tożsame i żadna z nich nie jest negacją drugiej.

W naszej tabeli T1 doskonale widać, że spójnik równoważności p<=>q jest różny na mocy definicji funkcji logicznych ## od spójnika „albo”($).

Ziemscy matematycy potrafią zapisywać dowolne funkcje logiczne algebry Boole’a tylko i wyłącznie w logice dodatniej (bo Y).
Zapiszmy zatem tabelę T1 tylko i wyłącznie w funkcjach logicznych w logice dodatniej (bo Y):
Kod:

T2
Definicja równoważności p<=>q: ## Definicja spójnika „albo”($):
 Y= (p<=>q)=p*q+~p*~q          ##  Y= (p$q)=p*~q+~p*q
 #                             ##  #
 Y= (p<=>q)=p*~q+~p*q          ##  Y= (p$q)=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych

Doskonale widać, że wszędzie dostaliśmy wewnętrzną sprzeczność ziemskiej algebry Boole’a:
Po pierwsze:
Znaczek negacji funkcji logicznej # leży w gruzach.
Po drugie:
Leży i kwiczy definicja znaczka różne na mocy definicji funkcji logicznych ##


8.2 Spójnik „albo” p$q

Definicja operatora implikacyjnego:
Operator implikacyjny, to operator definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery operatory implikacyjne:
p||=>q - operator implikacji prostej
p||~>q - operator implikacji odwrotnej
p|<=>q - operator równoważności
p$q - spójnik „albo”($) to nietypowa równoważność p$q = ~(p<=>q) = p<=>~q
p||~~>q - operator chaosu

Wszystkie definicje operatorów implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja podstawowa spójnika „albo” p$q:
Spójnik „albo”($) p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
A1B1: p$q=(A1: p=>~q)*(B1: p~>~q)=1*1=1
      A1B1:      A2B2:  |      A3B3:     A4B4:
A: 1: p=>~q = 2:~p~> q [=] 3: ~q~>p = 4: q=>~p =1 [=] 5: ~p+~q
      ##         ##            ##        ##               ##
B: 1: p~>~q = 2:~p=> q [=] 3: ~q=>p = 4: q~>~p =1 [=] 5:  p+q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład spójnika „albo”($) potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji spójnika „albo”($) jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>q=p*q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>q=p*q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>~q=1 wmusza fałszywość kontrprzykładu p~~>q=p*q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>~q=0 wmusza prawdziwość kontrprzykładu p~~>q=p*q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TA: Tabela prawdy spójnika „albo” p$q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
       A1B1:         A2B2:      |      A3B3:         A4B4:
A:  1: p=>~q =1 = 2:~p~>q  =1  [=] 3: ~q~>p  =1 = 4: q=>~p =1
A’: 1: p~~>q =0 =              [=]              = 4: q~~>p =0
       ##            ##         |      ##            ##
B:  1: p~>~q =1 = 2:~p=>q  =1  [=] 3: ~q=>p  =1 = 4: q~>~p =1
B’:             = 2:~p~~>~q=0  [=] 3: ~q~~>~p=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B2 p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
Stąd mamy:
Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2
dający odpowiedź na dwa pytania o p (A1B1) i ~p (A2B2):
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1
dający odpowiedź na dwa pytania o ~p (A2B2) i p (A1B1):
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


8.2.1 Spójnik „albo”($) w logice dodatniej p$q i ujemnej ~p$~q

W dalszej części wykładu, dla lepszego zrozumienia, będziemy się wspomagać prostym przykładem.

Prawo śfinii:
Dowolne zdanie od którego zaczynamy analizę matematyczną wyznacza punkt odniesienia, czyli jednoznacznie definiuje parametry formalne p i q.

Przykład:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Na mocy prawa śfinii przyjmujemy punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Przyjmujemy dziedzinę:
C (człowiek) - zbiór wszystkich ludzi
C=M+K
C (człowiek) = M (mężczyzna) „lub”(+) K (kobieta)
Stąd:
~M=[C-M] = [M+K -M] =K
~K = [C-K] = [M+K -K] =M
Innymi słowy:
K=~M - zbiór K to zaprzeczenie (~) zbioru M w dziedzinie C
M=~K - zbiór M to zaprzeczenie (~) zbioru K w dziedzinie C

Zapis formalny naszego przykładu to:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Prawą stronę czytamy:
Bycie mężczyzną (M=1) jest warunkiem koniecznym ~> i wystarczającym => do tego, aby nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

To samo w zapisie formalnym zgodnie z przyjętym punktem odniesienia:
p=M (mężczyzna)
q=K (kobieta)
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Jak widzimy, logika matematyczna obsługująca spójnik „albo” M$K jest dla wszystkich zrozumiała.

Tabela prawdy naszego przykładu rozpisana na zbiory to:
Kod:

Graficzna interpretacja spójnika „albo” M(mężczyzna) $ K(kobieta)
--------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” M$K w zbiorach               |
| Dziedzina minimalna:                                             |
| C=M+K - dziedzina C(człowiek) to suma logiczna zbiorów M+K       |
--------------------------------------------------------------------
| M - zbiór M(mężczyzn)          | K - zbiór K(kobiet)             |
| M$K = (A1: M=>~K)*(B1: M~>~K)  | K$M = (A4: K=>~M)*(B4: K~>~M)   |
| M$K definiuje:                 | K$M definiuje:                  |
| M=~(K)- zbiór M jest negacją K | K=~(M) - zbiór K jest negacją M |
| M=~K - zapis tożsamy           | K=~M - zapis tożsamy            |
| W zbiorach zachodzi również:   | W zbiorach zachodzi również:    |
| M=~(K)=~(~M) - bo K=~M         | K=~(M)=~(~K) - bo M=~K          |
--------------------------------------------------------------------

Dokładnie ta sama tabela w zapisach formalnych (oderwanych od przykładu) dla punktu odniesienia:
p=M (mężczyzna)
q=K (kobieta)
wygląda następująco.
Kod:

Graficzna interpretacja spójnika „albo” p$q
-------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” p$q w zbiorach              |
| Dziedzina minimalna:                                            |
| D=p+q - dziedzina minimalna to suma logiczna zbiorów p+q        |
-------------------------------------------------------------------
| p - zbiór p                   | q - zbiór q                     |
|p$q = (A1: p=>~q)*(B1: p~>~q)  | q$p = (A4: q=>~p)*(B4: q~>~p)   |
|p$q definiuje:                 | q$p definiuje:                  |
|p=~(q)- zbiór p jest negacją q | q=~(p) - zbiór q jest negacją p |
|p=~q - zapis tożsamy           | q=~p - zapis tożsamy            |
|W zbiorach zachodzi również:   |W zbiorach zachodzi również:     |
|p=~(~p) bo q=~p                | q=~(~q) bo p=~q                 |
-------------------------------------------------------------------


Nanieśmy nasz przykład do tabeli prawdy spójnika „albo”($)
Kod:

TA: Tabela prawdy spójnika „albo” p$q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia (zapis formalny):
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Kolumna A1B1 to punkt odniesienia (zapis aktualny):
A1: M=>~K =1 - bycie mężczyzną wystarcza => by nie być kobietą
B1: M~>~K =1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
M$K = (A1: M=>~K)*(B1: m~>~K) =1*1=1
Punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
       A1B1:         A2B2:      |      A3B3:         A4B4:
A:  1: p=>~q =1 = 2:~p~>q  =1  [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K =1 = 2:~M~>K  =1  [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q =0 =              [=]              = 4: q~~>p =0
A’: 1: M~~>K =0 =              [=]              = 4: K~~>M =0
       ##            ##         |      ##            ##
B:  1: p~>~q =1 = 2:~p=>q  =1  [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K =1 = 2:~M=>K  =1  [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:             = 2:~p~~>~q=0  [=] 3: ~q~~>~p=0
B’:             = 2:~M~~>~K=0  [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B2 p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
Stąd mamy:
Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2
dający odpowiedź na dwa pytania o p (A1B1) i ~p (A2B2):
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1
dający odpowiedź na dwa pytania o ~p (A2B2) i p (A1B1):
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W powyższej tabeli, dla poprawienia czytelności, uwidoczniono zmienne aktualne (związane z przykładem) w nagłówku tabeli oraz części głównej decydującej o treści zdań warunkowych „Jeśli p to q.

Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p „albo”($) zajdzie q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Przykład:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Przykład:
Bycie mężczyzną jest konieczne ~> i wystarczające => by nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Definicja spójnika „albo” ~p$~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Spójnik „albo” ~p$~q w logice ujemnej (bo ~q) to jednoczesne spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym poprzedniku p
A2: ~p~>q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest (=1) wystarczające => dla zajścia q
Stąd:
A2B2: ~p$~q = (A2: ~p~>q)*(B2:~p=>q)=1*1=1

Lewą stronę czytamy:
Zajdzie ~p „albo”($) zajdzie ~q
A2B2: ~p$~q = (A2: ~p~>q)*(B2:~p=>q)=1*1=1
Przykład:
Dowolny człowiek nie jest mężczyzną (~M=1) „albo”($) nie jest kobietą (~K=1)
A2B2: ~M$~K = (A2: ~M~>K)*(B2:~M=>K)=1*1=1
Trzeciej możliwości brak.
Zauważmy, że lewa strona spójnika „albo” ~p$~q jest zrozumiała, ale to zrozumienie nie jest trywialne.

Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia q
A2B2: ~p$q = (A2: ~p~>q)*(B2:~p=>q)=1*1=1
Nie bycie mężczyzną (~M=1) jest konieczne ~> i wystarczające => aby być kobietą (K=1)
A2B2: ~M$K = (A2: ~M~>K)*(B2:~M=>K)=1*1=1
Zauważmy, że tą wersję spójnika „albo”($) bez problemu rozumie każdy 5-cio latek.

Równanie operatora „albo” p|$q:
Kod:

T1.
Równanie operatora „albo” p|$q:
A1B1:                                                    A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
bo prawa Kubusia:
A1: p=>~q = A2: ~p~>q
B1: p~>~q = B2: ~p=>q
cnd

Dlaczego to jest równanie operatora „albo” p|$q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator „albo” p|$q w logice dodatniej (bo q) to układ równań logicznych:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) - co się stanie jeśli zajdzie p?
A2B2: ~p$~q = (A2: ~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p?

Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator „albo” ~p|$~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2: ~p$~q = (A2: ~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p?
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) - co się stanie jeśli zajdzie p?

Zachodzi tożsamość logiczna spójnika „albo”($):
A1B1: p$q = A2B2:~p$~q
co udowodniono wyżej w tabeli T1 prawami Kubusia.

Dowód matematycznie tożsamy:

Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Definicja warunku koniecznego p~>q dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Stąd mamy:
A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q):

A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = p*~q + ~p*q
p$q = p*~q + ~p*q

A2B2:
Spójnika „albo” ~p$~q w logice ujemnej (bo ~q):

A2:~p~>q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest (=1) wystarczające => dla zajścia q
stąd:
~p$~q = (A2: ~p~>q)*(B2:~p=>q)= (~p+~q)*(p+q) = ~p*p+~p*q + ~q*p + ~q*q = p*~q + ~p*q
~p$~q = p*~q + ~p*q

Stąd mamy logiczną tożsamość:
A1B1: p$q = A2B2: ~p$~q = p*~q + ~p*q
cnd

Definicja tożsamości logicznej „=”:
A1B1: p$q = A2B2:~p$~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Na poziomie spójnika „albo”($) mamy:
Udowodnienie iż dany układ spełnia definicję spójnika „albo” A1B1: p$q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję spójnika „albo” A2B2:~p$~q w logice ujemnej (bo ~q), albo odwrotnie.

Przechodząc na wyższy poziom operatorów p|$q mamy tak:
Udowodnienie iż zdanie warunkowe „Jeśli p to q” jest częścią operatora „albo” A1B1: p|$q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż to samo zdanie jest częścią operatora „albo” A2B2: ~p|$~q w logice ujemnej (bo ~q), albo odwrotnie.

8.2.2 Spójnik „albo” p$q jako negacja zbiorów/pojęć

Definicja podstawowa spójnika „albo” p$q:
Spójnik „albo”($) p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Kod:

TA: Tabela prawdy spójnika „albo” p$q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
       A1B1:         A2B2:      |      A3B3:         A4B4:
A:  1: p=>~q =1 = 2:~p~>q  =1  [=] 3: ~q~>p  =1 = 4: q=>~p =1
A’: 1: p~~>q =0 =              [=]              = 4: q~~>p =0
       ##            ##         |      ##            ##
B:  1: p~>~q =1 = 2:~p=>q  =1  [=] 3: ~q=>p  =1 = 4: q~>~p =1
B’:             = 2:~p~~>~q=0  [=] 3: ~q~~>~p=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B2 p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
Stąd mamy:
Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2
dający odpowiedź na dwa pytania o p (A1B1) i ~p (A2B2):
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1
dający odpowiedź na dwa pytania o ~p (A2B2) i p (A1B1):
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Z tabeli TA odczytujemy matematyczną definicję spójnika „albo”($).

Matematyczna definicja spójnika „albo” p$q:
Spójnik „albo” p$q to warunek wystarczający => zachodzący w dwie strony dla zanegowanego q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B3: ~q=>p =1 - zajście ~q jest (=1) wystarczające => dla zajścia p
Zajdzie p „albo”($) q
A1B3: p$q = (A1: p=>~q)*(B3: ~q=>p)=1*1=1

Prawo Albatrosa:
W spójniku „albo” p$q relacja warunku wystarczającego => w obie strony zajdzie wtedy i tylko wtedy gdy spełniona będzie tożsamość:
q=~p
Dowód:
A1B3: p$q = (A1: p=>~q)*(B3: ~q=>p)=1*1=1
dla q=~p mamy:
p$~p = (A1: p=>~(~p))*(B3: ~(~p)=>p)
p$~p = (A1: p=>p)*(B3: p=>p) =1*1 =1
bo:
p=>p =1 - każdy zbiór/pojęcie jest podzbiorem => siebie samego
cnd

Stąd mamy:
Definicja negacji zbiorów p=~q:
Zbiór p jest negacją zbioru q (p=~q) wtedy i tylko wtedy gdy spełniona jest definicja spójnika „albo” p$q:
p=~q <=> (A1: p=>~q)*(B3: ~q=>p) = p$q

Dla B3 Zastosujmy prawo Tygryska:
B3: ~q=>p = B1: p~>~q
stąd mamy tożsamą definicję spójnika „albo”($).

Podstawowa definicja spójnika „albo” p$q:
Spójnik „albo” p$q to jednocześnie zachodzący zarówno warunek wystarczający => jak i konieczny ~> między tymi samymi punktami i w tym samym kierunku dla zanegowanego q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
Stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q)=1*1=1

Lewą stronę czytamy:
Zajdzie p “albo”($) zajdzie q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q)=1*1=1
Przykład:
Dowolny człowiek jest mężczyzną (M=1) albo kobietą (K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K)=1*1=1

Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => do tego, aby zaszło ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q)=1*1=1
Przykład:
Bycie mężczyzną (M=1) jest konieczne ~> i wystarczające => do tego, aby nie być kobietą (~K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K)=1*1=1

Prawo Albatrosa:
Spójnik „albo” p$q będzie spełniony wtedy i tylko wtedy gdy spełniona będzie tożsamość:
q=~p

Dowód:
Podstawowa definicja spójnika „albo” p$q:
Spójnik „albo” p$q to jednocześnie zachodzący zarówno warunek wystarczający => jak i konieczny ~> między tymi samymi punktami i w tym samym kierunku dla zanegowanego q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
Stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q)=1*1=1
dla q=~p mamy:
p$~p = (A1: p=>~(~p))*(B1: p~>~(~p))
p$~p = (A1: p=>p)*(B1: p~>p) =1*1 =1
bo:
p=>p =1 - każdy zbiór/pojęcie jest podzbiorem => siebie samego
p~>p =1 - każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd

Zauważmy że:
W całej tabeli TA obowiązuje ten sam punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Inaczej popełniamy błąd podstawienia.

Zastosujmy do definicji A1B1 prawa kontrapozycji dla warunku wystarczającego => i koniecznego ~>:
A1: p=>~q = A4: q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
B1: p~>~q = B4: q~>~p - prawo kontrapozycji dla warunku koniecznego ~>

stąd mamy:
Definicja spójnika „albo” q$p:
Spójnik „albo” q$p to jednocześnie zachodzący zarówno warunek wystarczający => jak i konieczny ~> między tymi samymi punktami i w tym samym kierunku dla zanegowanego p
A4: q=>~p =1 - zajście q jest (=1) wystarczające => dla zajścia ~p
B4: q~>~p =1 - zajście q jest (=1) konieczne ~> dla zajścia ~p
Stąd:
A4B4: q$p = (A4: q=>~p)*(B4: q~>~p)
Łatwo to widzieć w tabeli TA.

Lewą stronę czytamy:
Zajdzie q „albo”($) zajdzie p
A4B4: q$p = (A4: q=>~p)*(B4: q~>~p)
Nasz przykład:
Dowolny człowiek jest kobietą (K=1) albo mężczyzną (M=1)
A4B4: K$M = (A4: K=>~M)*(B4: K~>~M)

Prawą stronę czytamy:
q jest konieczne ~> i wystarczające => do tego, aby zaszło ~p
A4B4: q$p = (A4: q=>~p)*(B4: q~>~p)
Nasz przykład:
Bycie kobietą (K=1) jest konieczne ~> i wystarczające => do tego, aby nie być mężczyzną (~M=1)
A4B4: K$M = (A4: K=>~M)*(B4: K~>~M)

Prawo Albatrosa:
Spójnik „albo” q$p będzie spełniony wtedy i tylko wtedy gdy spełniona będzie tożsamość:
p=~q

Dowód:
Definicja spójnika „albo” q$p:
Spójnik „albo” q$p to jednocześnie zachodzący zarówno warunek wystarczający => jak i konieczny ~> między tymi samymi punktami i w tym samym kierunku dla zanegowanego p
A4: q=>~p =1 - zajście q jest (=1) wystarczające => dla zajścia ~p
B4: q~>~p =1 - zajście q jest (=1) konieczne ~> dla zajścia ~p
Stąd:
A4B4: q$p = (A4: q=>~p)*(B4: q~>~p)
Łatwo to widzieć w tabeli TA.

Dla p=~q mamy:
q$~q = (A4: q=>~(~q))*(B4: q~>~(~q))
q$~q = (A4: q=>q)*(B4: q~>q) =1*1 =1
bo:
q=>q =1 - każdy zbiór/pojęcie jest podzbiorem => siebie samego
q~>q =1 - każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd

Stąd mamy:
Definicja negacji zbiorów q=~p:
Zbiór q jest negacją zbioru p (q=~p) wtedy i tylko wtedy gdy spełniona jest definicja spójnika „albo” q$p:
q=~p <=> (A4: q=>~p)*(B4: q~>~p) = q$p

W algebrze Kubusia zachodzi tożsamość znaczków:
# = $
Definicja znaczka #:
Dwa zbiory/pojęcia p i q są różne w znaczeniu znaczka # wtedy i tylko wtedy gdy dowolna strona znaczka # jest zaprzeczeniem drugiej strony.

Graficzna interpretacja spójnika „albo” p$q
Kod:

Graficzna interpretacja spójnika „albo” p$q
-------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” p$q w zbiorach              |
| Dziedzina minimalna:                                            |
| D=p+q - dziedzina minimalna to suma logiczna zbiorów p+q        |
-------------------------------------------------------------------
| p - zbiór p                   | q - zbiór q                     |
|p$q = (A1: p=>~q)*(B1: p~>~q)  | q$p = (A4: q=>~p)*(B4: q~>~p)   |
|p$q definiuje:                 | q$p definiuje:                  |
|p=~(q)- zbiór p jest negacją q | q=~(p) - zbiór q jest negacją p |
|p=~q - zapis tożsamy           | q=~p - zapis tożsamy            |
|W zbiorach zachodzi również:   |W zbiorach zachodzi również:     |
|p=~(~p) bo q=~p                | q=~(~q) bo p=~q                 |
-------------------------------------------------------------------
[code]
Przykład interpretacji spójnika „albo”($) dla zdania:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K)
[/code]
Graficzna interpretacja spójnika „albo” M(mężczyzna) $ K(kobieta)
--------------------------------------------------------------------
| TAZ - tabela prawdy spójnika „albo” M$K w zbiorach               |
| Dziedzina minimalna:                                             |
| C=M+K - dziedzina C(człowiek) to suma logiczna zbiorów M+K       |
--------------------------------------------------------------------
| M - zbiór M(mężczyzn)          | K - zbiór K(kobiet)             |
| M$K = (A1: M=>~K)*(B1: M~>~K)  | K$M = (A4: K=>~M)*(B4: K~>~M)   |
| M$K definiuje:                 | K$M definiuje:                  |
| M=~(K)- zbiór M jest negacją K | K=~(M) - zbiór K jest negacją M |
| M=~K - zapis tożsamy           | K=~M - zapis tożsamy            |
| W zbiorach zachodzi również:   | W zbiorach zachodzi również:    |
| M=~(K)=~(~M) - bo K=~M         | K=~(M)=~(~K) - bo M=~K          |
--------------------------------------------------------------------


8.3 Operator „albo” p|$q

Zapiszmy wyprowadzoną wyżej tabelę prawdy dla spójnika „albo”($) wraz z przykładem.
A1B1:
Dowolny człowiek jest mężczyzną (M=1) albo($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K)

Definicja podstawowa spójnika „albo” p$q:
Spójnik „albo”($) p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Kod:

TA: Tabela prawdy spójnika „albo” p$q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia (zapis formalny):
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Kolumna A1B1 to punkt odniesienia (zapis aktualny):
A1: M=>~K =1 - bycie mężczyzną wystarcza => by nie być kobietą
B1: M~>~K =1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
M$K = (A1: M=>~K)*(B1: m~>~K) =1*1=1
Punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
       A1B1:         A2B2:      |      A3B3:         A4B4:
A:  1: p=>~q =1 = 2:~p~>q  =1  [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K =1 = 2:~M~>K  =1  [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q =0 =              [=]              = 4: q~~>p =0
A’: 1: M~~>K =0 =              [=]              = 4: K~~>M =0
       ##            ##         |      ##            ##
B:  1: p~>~q =1 = 2:~p=>q  =1  [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K =1 = 2:~M=>K  =1  [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:             = 2:~p~~>~q=0  [=] 3: ~q~~>~p=0
B’:             = 2:~M~~>~K=0  [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B2 p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
Stąd mamy:
Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2
dający odpowiedź na dwa pytania o p (A1B1) i ~p (A2B2):
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1
dający odpowiedź na dwa pytania o ~p (A2B2) i p (A1B1):
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W powyższej tabeli, dla poprawienia czytelności, uwidoczniono zmienne aktualne (związane z przykładem) w nagłówku tabeli oraz części głównej decydującej o treści zdań warunkowych „Jeśli p to q.

Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na dwa pytania o p (A1B1) i ~p (A2B2):

A1B1:
Co się stanie jeśli zajdzie p?

Odpowiedź mamy w kolumnie A1B1.
Zajście p jest konieczne ~> i wystarczające => dla zajścia ~q
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q)
Nasz przykład:
Bycie mężczyzną (M=1) jest konieczne ~> i wystarczające => do tego, by nie być kobietą (~K)
A1B1: M$K =(A1: M=>~K)* (B1: M~>~K)

Odpowiedź w warunku wystarczającym => mamy w zdaniu A1.
A1.
Jeśli człowiek jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Bycie mężczyzną jest warunkiem wystarczającym => do tego, by nie być kobietą
Bycie mężczyzną daje nam gwarancję matematyczną => iż nie jesteśmy kobietą
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem.
Sprawdzamy:
A1’
Jeśli człowiek jest mężczyzną (M=1) to może ~~> być kobietą (K=1)
M~~>K = M*K =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)

A2B2:
Co się stanie jeśli zajdzie ~p?

Odpowiedź mamy w kolumnie A2B2.
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia q
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q)
Nasz przykład:
Nie bycie mężczyzną (~M=1) jest konieczne ~> i wystarczające => do tego, aby być kobietą (K=1)
A2B2:~M$~K=(A2:~M~>K)*(B2:~M=>K)

Odpowiedź w warunku wystarczającym => mamy w zdaniu B2.
B2.
Jeśli człowiek nie jest mężczyzną (~M=1) to na 100% => jest kobietą (K=1)
~M=>K =1
Nie bycie mężczyzną jest warunkiem wystarczającym => do tego, aby być kobietą
Nie bycie mężczyzną daje nam gwarancję matematyczną => iż jesteśmy kobietą
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
Sprawdzamy:
B2’
Jeśli człowiek nie jest mężczyzną (~M=1) to może ~~> nie być kobietą (~K=1)
~M~~>~K = ~M*~K =0
Dowód:
zachodzi tożsamość zbiorów:
K=~M - zbiór kobiet (K) to zanegowany zbiór mężczyzn (M) w dziedzinie C (człowiek)
stąd mamy
K~~>~K = K*~K =[] =0
bo zbiór kobiet (K) jest rozłączny ze zbiorem nie kobiet (~K)
Zachodzi tożsamość zbiorów:
~K=M - zbiór mężczyzn (M) to zanegowany zbiór kobiet (K) w dziedzinie C (człowiek)
Stąd:
K~~>M = K*M =[] =0 - bo zbiór kobiet (K) jest rozłączny ze zbiorem mężczyzn (M)
cnd

Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1 dający odpowiedź na dwa pytania o ~p (A2B2) i p (A1B1):
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Doskonale widać, że operator „albo” ~p|$~q to identyczna seria zdań jak wyżej, tylko analizę rozpoczynamy od A2B2 a kończymy na A1B1.

8.4 Operator „albo” q|$p

Zapiszmy wyprowadzoną wyżej tabelę prawdy dla spójnika „albo”($) wraz z przykładem.
A1B1:
Dowolny człowiek jest mężczyzną (M=1) albo($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K)

Definicja podstawowa spójnika „albo” p$q:
Spójnik „albo”($) p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Kod:

TA: Tabela prawdy spójnika „albo” p$q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q
Kolumna A1B1 to punkt odniesienia (zapis formalny):
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Kolumna A1B1 to punkt odniesienia (zapis aktualny):
A1: M=>~K =1 - bycie mężczyzną wystarcza => by nie być kobietą
B1: M~>~K =1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
M$K = (A1: M=>~K)*(B1: m~>~K) =1*1=1
Punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
       A1B1:         A2B2:      |      A3B3:         A4B4:
A:  1: p=>~q =1 = 2:~p~>q  =1  [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K =1 = 2:~M~>K  =1  [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q =0 =              [=]              = 4: q~~>p =0
A’: 1: M~~>K =0 =              [=]              = 4: K~~>M =0
       ##            ##         |      ##            ##
B:  1: p~>~q =1 = 2:~p=>q  =1  [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K =1 = 2:~M=>K  =1  [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:             = 2:~p~~>~q=0  [=] 3: ~q~~>~p=0
B’:             = 2:~M~~>~K=0  [=] 3: ~K~~>~M=0

Równanie operatora „albo” q|$p:
A4B4:                                                    A3B3:
q$p = (A4: q=>~p)*(B4: q~>~p) = (A3:~q~>p)*(B3:~q=>p) = ~q$~p
Stąd mamy:
Operator „albo” q|$p to układ równań logicznych A4B4 i A3B3
dający odpowiedź na dwa pytania o q (A4B4) i ~q (A3B3):
A4B4: q$p =(A4: q=>~p)*(B4 q~>~p) - co się stanie jeśli zajdzie q
A3B3:~q$~p=(A3:~q~> p)*(B3:~q=>p) - co się stanie jeśli zajdzie ~q

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~q|$~p to układ równań logicznych A3B3 i A4B4
dający odpowiedź na dwa pytania o ~p (A3B3) i p (A4B4):
A3B3:~q$~p=(A3:~q~> p)*(B3:~q=>p) - co się stanie jeśli zajdzie ~q
A4B4: q$p =(A4: q=>~p)*(B4 q~>~p) - co się stanie jeśli zajdzie q

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W powyższej tabeli, dla poprawienia czytelności, uwidoczniono zmienne aktualne (związane z przykładem) w nagłówku tabeli oraz części głównej decydującej o treści zdań warunkowych „Jeśli p to q.

Operator „albo” q|$p to układ równań logicznych A4B4 i A3B3 dający odpowiedź na dwa pytania o q (A4B4) i ~q (A3B3):

A4B4:
Co się stanie jeśli zajdzie q?

Odpowiedź mamy w kolumnie A4B4.
Zajście q jest konieczne ~> i wystarczające => dla zajścia ~p
A4B4: q$p =(A4: q=>~p)*(B4 q~>~p)
Nasz przykład:
Bycie kobietą (K=1) jest konieczne ~> i wystarczające => do tego, by nie być mężczyzną (~M=1)
A4B4: K$M =(A4: K=>~M)*(B4 K~>~M)

Odpowiedź w warunku wystarczającym => mamy w zdaniu A4.
A4.
Jeśli człowiek jest kobietą (K=1) to na 100% => nie jest mężczyzną (~M=1)
K=>~M =1
Bycie kobietą jest warunkiem wystarczającym => do tego, by nie być mężczyzną
Bycie kobietą daje nam gwarancję matematyczną => iż nie jesteśmy mężczyzną
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A4’ dla prawdziwego warunku wystarczającego A4 musi być fałszem.
Sprawdzamy:
A4’
Jeśli człowiek jest kobietą (K=1) to może ~~> być mężczyzną (M=1)
K~~>K = K*M =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór kobiet (K) jest rozłączny ze zbiorem mężczyzn (M)

A3B3:
Co się stanie jeśli zajdzie ~q?

Odpowiedź mamy w kolumnie A3B3.
Zajście ~q jest konieczne ~> i wystarczające => dla zajścia p
A3B3:~q$~p=(A3:~q~> p)*(B3:~q=>p)
Nasz przykład:
Nie bycie kobietą (~K=1) jest konieczne ~> i wystarczające => do tego, aby być mężczyzną (M=1)
A3B3:~K$~M=(A3:~K~> M)*(B3:~K=>M)

Odpowiedź w warunku wystarczającym => mamy w zdaniu B3.
B3.
Jeśli człowiek nie jest kobietą (~K=1) to na 100% => jest mężczyzną (M=1)
~K=>M =1
Nie bycie kobietą jest warunkiem wystarczającym => do tego, aby być mężczyzną
Nie bycie kobietą daje nam gwarancję matematyczną => iż jesteśmy mężczyzną
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B3’ dla prawdziwego warunku wystarczającego B3 musi być fałszem.
Sprawdzamy:
B3’
Jeśli człowiek nie jest kobietą (~K=1) to może ~~> nie być mężczyzną (~M=1)
~K~~>~M = ~K*~M =0
Dowód:
Zachodzi tożsamość zbiorów:
M=~K - zbiór mężczyzn (M) to zanegowany zbiór kobiet (K) w dziedzinie C (człowiek)
stąd mamy
M~~>~M = M*~M =[] =0
bo zbiór mężczyzn (M) jest rozłączny ze zbiorem nie mężczyzn (~M)
Zachodzi tożsamość zbiorów:
~M=K - zbiór kobiet (K) to zanegowany zbiór mężczyzn (M) w dziedzinie C (człowiek)
Stąd:
M~~>K = M*K =[] =0 - bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)
cnd

Operator „albo” ~q|$~p to układ równań logicznych A3B3 i A4B4 dający odpowiedź na dwa pytania o ~q (A3B3) i q (A4B4):
A3B3:~q$~p=(A3:~q~> p)*(B3:~q=>p) - co się stanie jeśli zajdzie ~q
A4B4: q$p =(A4: q=>~p)*(B4 q~>~p) - co się stanie jeśli zajdzie q

Doskonale widać, że operator „albo” ~q|$~p to identyczna seria zdań jak wyżej, tylko analizę rozpoczynamy od A3B3 a kończymy na A4B4.

8.5 Skąd bierze się zero-jedynkowa definicja spójnika „albo” p$q?

Kod:

T1
Zero-jedynkowa definicja warunku wystarczającego =>:
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1

Kod:

T2
Zero-jedynkowa definicja warunku koniecznego ~>:
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0
p~>q=0 <=> p=0 i q=1
Inaczej:
p=>q=1


Definicja podstawowa spójnika „albo” p$q:
Spójnik „albo”($) p$q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku przy zanegowanym następniku q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Stąd mamy:
Kod:

T3
               A1:    B1:     p$q=
   p  q ~p ~q  p=>~q  p~>~q   (A1: p=>~q)*(B1: p~>~q)
A: 1  1  0  0   0      1       0
B: 1  0  0  1   1      1       1
C: 0  0  1  1   1      0       0
D: 0  1  1  0   1      1       1

Stąd mamy zero-jedynkową definicję spójnika „albo”($):
Kod:

T4
Zero-jedynkowa definicja spójnika „albo”($):
   p  q  p$q
A: 1$ 1  =0
B: 1$ 0  =1
C: 0$ 0  =0
D: 0$ 1  =1
p$q=1 <=> p=1 i q=0 lub p=0 i q=1
Inaczej:
p$q=0


Zadanie domowe dla czytelnika:
Wyprowadź definicję spójnika „albo”($) w spójnikach „i”(*) i „lub”(+) dwoma sposobami.

Sposób 1
Skorzystaj z definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q

Sposób 2
Wyprowadź definicję spójnika „albo”($) bezpośrednio z tabeli zero-jedynkowej (T4) definiującej ten spójnik.

Wskazówka:
Patrz punkt 1.10.1
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin