Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia dla matematyków

 
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:19, 07 Maj 2024    Temat postu: Algebra Kubusia dla matematyków

Algebra Kubusia dla matematyków
Wybrane fragmenty z pełnej wersji algebry Kubusia

2024-05-08 Premiera

Linki do wszystkich części algebry Kubusia w pdf:
1.
Premiera po n-liftingach: 2023-12-24
"Algebra Kubusia - matematyka języka potocznego" (Stron: 1120):
[link widoczny dla zalogowanych]
Kod:
https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0

Pełna wersja algebry Kubusia zawierająca wszystkie możliwe szczegóły w tym temacie.

2.
Premiera: 2024-05-08
„Algebra Kubusia dla matematyków” (Stron 135)
[link widoczny dla zalogowanych]
Kod:
https://www.dropbox.com/scl/fi/hi4dzp5i5xqupc9m93820/Algebra-Kubusia-dla-matematyk-w-w-pdf.pdf?rlkey=sb8gb4c36060jfbcoha0k63yf&dl=0

Najważniejsze fragmenty pełnej wersji algebry Kubusia

3.
Premiera: 2024-04-01
„Algebra Kubusia - Elementarz teorii zdarzeń” (stron: 153):
[link widoczny dla zalogowanych]
Kod:
https://www.dropbox.com/scl/fi/kgktscz3uhlxdr91hdq1q/AK-Zwiastun-w-pdf.pdf?rlkey=umxrjdxmw4dhb8yh6pp01awdb&dl=0

„Elementarz teorii zdarzeń” to kompendium wiedzy w temacie teorii zdarzeń.

4.
Premiera: 2024-04-16
„Algebra Kubusia - Elementarz teorii zbiorów” (stron 114)
[link widoczny dla zalogowanych]
Kod:
https://www.dropbox.com/scl/fi/71ic2mnqn98lhwdg8cuao/Algebra-Kubusia-dla-5-cio-latk-w-w-pdf.pdf?rlkey=1mis89ihnc1b2ftratvjbt1t5&dl=0

„Elementarz teorii zbiorów” to kompendium wiedzy w temacie teorii zbiorów.

Autor:
Kubuś ze 100-milowego lasu

Rozszyfrowali:
Rafal3006 i przyjaciele

ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury.

Link do forum filozoficznego sfinia z jego niezwykłym regulaminem pozwalającym głosić dowolne herezje bez obawy o bana - tylko i wyłącznie dzięki temu algebra Kubusia została rozszyfrowana:
http://www.sfinia.fora.pl/zaprzyjaznione-portale,60/
Na forum śfinia mamy dostęp do pełnej, 18 letniej historii rozszyfrowywania algebry Kubusia.

Link do debiutu „Algebry Kubusia” na forum matematyka.pl:
[link widoczny dla zalogowanych]

Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Słupek, Fiklit, Yorgin, Exodim, FlauFly, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski, MaluśnaOwieczka, Zefciu i inni.

Kluczowi przyjaciele Kubusia, którzy wnieśli największy wkład w rozszyfrowanie algebry Kubusia to: Rafal3006, Wuj Zbój, Volrath, Macjan, Irbisol, Fiklit (kolejność chronologiczna).






Spis treści:
1.0 Nowa algebra Boole'a
2.0 Kwintesencja algebry Kubusia w zdarzeniach
2.10 Podstawowe spójniki implikacyjne
28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia
29.0 Krótka historia rozszyfrowywania algebry Kubusia

Spis treści
0.0 Skorowidz znaczków używanych w „Algebrze Kubusia dla matematyków” 4
0.1 O co chodzi w algebrze Kubusia? 5


Motto Rafała3006:
Napisać algebrę Kubusia w taki sposób, by ziemski matematyk był w stanie ją zrozumieć i zaakceptować, mimo iż na starcie nie zna ani jednej definicji obowiązującej w AK.


Rozszyfrowanie algebry Kubusia to 18 lat dyskusji na forum filozoficznym w Polsce, to około 35 000 postów napisanych wyłącznie w temacie "Logika matematyczna"
Algebra Kubusia to podłożenie matematyki pod język potoczny człowieka, czyli coś, o czym matematycy marzą od 2500 lat (od Sokratesa).

Pełna wersja „Algebry Kubusia - matematyka języka potocznego” to 1124 strony publikacji w pdf, gdzie 100% definicji z zakresu logiki matematycznej jest innych niż w jakiejkolwiek logice matematycznej znanej ziemskim matematykom. Trudno zatem się spodziewać, by tak duża publikacja skłoniła ziemskich matematyków do jej przeczytania.

W algebrze Kubusia dla matematyków skupiono się przede wszystkim na opisie formalnym (ogólnym) tej algebry. Dzięki temu, że zachowano tu oryginalną numerację rozdziałów czytelnik będzie miał łatwy dostęp do konkretnych przykładów zarówno dla teorii zdarzeń (pkt. 3.0 do 3.9) zrozumiałej dla każdego 5-cio latka, jak i dla teorii zbiorów (pkt. 14.0 do 19.0) zrozumiałej dla uczniów I klasy LO.
Kwintesencja algebry Kubusia to punkt 2.0, czyli zaledwie 64 strony prostym tekstem napisane.

Co zawiera "Algebra Kubusia dla matematyków"?
1.0 Nowa algebra Boole'a będąca podzbiorem algebry Kubusia.
2.0 Kompendium algebry Kubusia dla teorii zdarzeń i teorii zbiorów zawierające wszystkie definicje
i prawa logiki matematycznej obowiązujące w obsłudze zdań warunkowych „Jeśli p to q”
28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia (polecam matematykom)
29.0 Krótka historia rozszyfrowania algebry Kubusia

Kluczowym prawem algebry Kubusia jest prawo Grzechotnika (pkt. 1.5.4, 1.7)

Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

Prawo Grzechotnika jest dowodem, iż wszystkie ziemskie logiki matematyczne (KRZ, modalna, intuicjonistyczna, relewantna etc) zbudowane są na fundamencie z piasku - algebrze Boole’a która jest wewnętrznie sprzeczna.
Algebra Kubusia to rewolucja w logice matematycznej.
Istotą każdej rewolucji jest zburzenie starego porządku (prawo Grzechotnika) by na gruzach mogła zakwitnąć nowa idea, algebra Kubusia.

W algebrze Kubusia wszystkie definicje i prawa logiki matematycznej mają 100% pokrycie w teorii bramek logicznych (pkt. 11.0), co jest twardym dowodem jej poprawności czysto matematycznej.

Matematycy znają zero-jedynkową tabelę wszystkich 16 dwuargumentowych spójników logicznych:
[link widoczny dla zalogowanych]
ale nie znają jej poprawnej interpretacji matematycznej
Poprawną interpretację matematyczną tej tabeli znajdziemy wyłącznie w algebrze Kubusia (pkt. 1.16)

Fundamentalne różnice między KRZ a algebrą Kubusia (polecam matematykom) opisano w rozdziale:
28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia
Wspólny punkt zaczepienia między KRZ i AK to prawo eliminacji znaczka =>, sprowadzające obsługę zdań warunkowych „Jeśli p to q” do poziomu spójników „lub”(+) i „i”(*), gdzie o żadnych warunkach wystarczających => i koniecznych ~> (istocie zdań warunkowych!) mowy być nie może.

0.0 Skorowidz znaczków używanych w „Algebrze Kubusia dla matematyków”

Definicje znaczków używanych w algebrze Kubusia poparto prostymi przykładami, zrozumiałymi dla każdego 5-cio latka.

I.
Nowa algebry Boole'a związana wyłącznie za spójnikami "lub"(+) i "i"(*)


1.
Znaczki elementarne (1.1):

1 = prawda
0 = fałsz
(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Definicja logiki dodatniej (bo p) i logiki ujemnej (bo ~p) (1.1.1)
2.
Spójniki podstawowe "lub"(+) i "i"(*) zgodne z językiem potocznym:

(+) - spójnik „lub”(+) w języku potocznym (1.9)
(*) - spójnik „i”(*) w języku potocznym (1.10)
3.
Operatory logiczne "lub"(|+) i "i'(|*) definiowane spójnikami podstawowymi "lub"(+) i "i"(*):

(|+) - operator "lub"(|+) w języku potocznym (1.9.1)
(|*) - operator "i"(|*) w języku potocznym (1.10.1)


II.
Algebra Kubusia obsługująca zdania warunkowe "Jeśli p to q"


Definicja spójnika implikacyjnego:
Spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>

Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki implikacyjne: =>, ~>, ~~>
2.
Podstawowe spójniki implikacyjne: |=>, |~>, <=>, |~~> definiowane spójnikami elementarnymi
3.
Operatory implikacyjne: ||=>, ||~>, |<=>, ||~~> definiowane podstawowymi spójnikami implikacyjnymi.

1.
Spójniki elementarne zdań warunkowych "Jeśli p to q":

Zdarzenia:
~~> - zdarzenie możliwe w teorii zdarzeń (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Zbiory:
~~> - element wspólny zbiorów w teorii zbiorów (2.3.1)
=> - warunek wystarczający (2.3.2)
~> - warunek konieczny (2.3.3)

2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:

|=> - implikacja prosta (2.12)
|~> - implikacja odwrotna (2.13)
<=> - równoważność (2.14)
|~~> - chaos (2.15)

3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi:

||=> - operator implikacji prostej (2.12.1)
||~> - operator implikacji odwrotnej (2.13.1)
|<=> - operator równoważności (2.14.1)
||~~> - operator chaosu (2.15.1)

III.
Pozostałe znaczki algebry Kubusia:

# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony (2.5.1)
## - różne na mocy definicji (2.5.1)
### - różne na mocy nietrywialnego błędu podstawienia (2.7.4)

Uwaga:
To są wszystkie znaczki używane w algebrze Kubusia tzn. nie są potrzebne w AK jakiekolwiek inne znaczki.
W szczególności nie ma w algebrze Kubusia rachunku kwantyfikatorów i związanych z nim znaczków: kwantyfikator mały (istnieje) \/ i kwantyfikator duży (dla każdego) /\

0.1 O co chodzi w algebrze Kubusia?

Niniejszy artykuł to opowieść w języku potocznym o co chodzi w algebrze Kubusia w sposób zgrubny, bez wnikania w szczegóły, co wydaje się być celowe, by czytelnik zdał sobie sprawę do czego zmierzamy.
Do szczegółów o co chodzi w algebrze Kubusia dojdziemy powoli i systematycznie startując z algebrą Kubusia od zera, czyli od dowodu prawdziwości prawa Grzechotnika udowodnionego na samym początku algebry Kubusia (pkt. 1.5.4 i 1.7 - poziom 5-cio latka).

Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

O co chodzi w algebrze Kubusia?

Rozważmy zdania prawdziwe w Klasycznym Rachunku Zdań:
Jeśli 2+2=5 to jestem papieżem
Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.

W algebrze Kubusia powyższe zdania warunkowe „Jeśli p to q” oraz równoważność p<=>q są fałszywe z powodu braku wspólnej dziedziny dla p i q, zatem na mocy algorytmu Puchacza (pkt. 2.11) nie wchodzą w skład żadnego z 5 rozłącznych operatorów implikacyjnych.

1: ||=> - operator implikacji prostej
##
2: ||~> - operator implikacji odwrotnej
##
3: |<=> - operator równoważności
##
4: ||~~> - operator chaosu
##
5: |$ - operator spójnika „albo”($)
Gdzie:
## - różne na mocy definicji

W algebrze Kubusia istnieją też zdania fałszywe, matematycznie bezcenne bo wchodzące w skład jednego z 5 rozłącznych operatorów implikacyjnych.

Przykład takiego zdania:
A1’
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =0
Niemożliwe jest (=0) zdarzenie: pada (P) i nie jest pochmurno (~CH)

Mam nadzieję, że wszyscy zgadzamy się, iż określenie matematycznej fałszywości zdania A1’ to poziom 5-cio letniego dziecka.
Popatrzmy teraz co dalej będzie się działo cytując fragment algebry Kubusia.
Kod:
https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0

Cytat:


Definicja kontrprzykładu w zdarzeniach (pkt. 2.2.4):
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wymusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wymusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

Na mocy definicji kontrprzykładu prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywość kontrprzykładu A1' (i odwrotnie)
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH=0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu tego faktu nie musimy udowadniać, ale możemy, co wyżej uczyniliśmy.

Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’

Doskonale tu widać, że na mocy definicji kontrprzykładu fałszywy kontrprzykład A1’: P~~>~CH=0 wymusza prawdziwy warunek wystarczający A1: P=>CH=1 (i odwrotnie)

Wniosek:
Fałszywy kontrprzykład A1’ jest fałszem bezcennym, bowiem wchodzi w skład operatora implikacji prostej P||=>CH i oczywiście na mocy prawa Puchacza nie ma prawa wchodzić w skład jakiegokolwiek innego operatora implikacyjnego (patrz wyżej 1-5).

Podsumowując:
Zadaniem algebry Kubusia jest rozstrzyganie czy:
1.
Wypowiedziane zdanie warunkowe „Jeśli p to q” (także fałszywe, np. fałszywy kontrprzykład A1’: P~~>~CH=0) podlega pod algorytm Puchacza.
2.
Jeśli dostaniemy rozstrzygnięcie pozytywne w punkcie 1 to w następnym kroku należy udowodnić w skład jakiego operatora implikacyjnego wchodzi badane zdanie, a może wchodzić tylko i wyłącznie w skład jednego z 5 rozłącznych operatorów implikacyjnych.


Ostatnio zmieniony przez rafal3006 dnia Sob 11:04, 18 Maj 2024, w całości zmieniany 12 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:20, 07 Maj 2024    Temat postu:

Algebra Kubusia dla matematyków
1.0 Nowa algebra Boole'a

Spis treści
1.0 Nowa algebra Boole’a 1
1.1 Definicje elementarne algebry Boole'a 2
1.1.1 Definicja negacji 3
1.1.2 Negator dwukierunkowy w bramkach logicznych 4
1.2 Prawa Prosiaczka 5
1.2.1 Dowód praw Prosiaczka na gruncie fizyki 6
1.3 Fundamenty algebry Boole'a 6
1.3.1 Definicja funkcji logicznej algebry Boole'a: 7
1.3.2 Prawo negacji funkcji logicznej Y 8
1.3.3 Ogólna definicja logiki matematycznej 9
1.4 Definicja funkcji logicznej jednoargumentowej Y=x 10
1.4.1 Definicja operatora logicznego jednoargumentowego Y|=x 10
1.4.2 Tabela wszystkich możliwych operatorów jednoargumentowych 11
1.5 Funkcje Y=x i operatory Y|=x jednoargumentowe 11
1.5.1 Definicja funkcji transmisji Y=p i operatora transmisji Y|=p 12
1.5.2 Definicja funkcji negacji Y=~p i operatora negacji Y|=~p 13
1.5.3 Relacja matematyczna między operatorami Y|=p a Y|=~p 14
1.5.4 Prawo Grzechotnika dla funkcji jednoargumentowych 15
1.5.5 Prawo Sokoła 16
1.6 Definicja standardu dodatniego w języku potocznym 16
1.7 Prawo Grzechotnika na przykładzie zrozumiałym dla 5-cio latka 16
1.7.1 Dowód prawa Grzechotnika na poziomie przedszkola 20
1.7.2 Prawo Sokoła 20
1.7.3 Definicja poprawnej budowy funkcji logicznej Y 21
1.8 Definicja funkcji logicznej Y=f(x) definiowanej spójnikami „i”(*) i „lub”(+) 21
1.8.1 Definicja operatora Y|=f(x) definiowanego spójnikami „i”(*) i „lub”(+) 22
1.9 Definicja spójnika „lub”(+) Y=K+T 22
1.9.1 Definicja operatora „lub”(|+) Y|=K+T 22
1.10 Definicja spójnika „i”(*) Y=K*T 24
1.10.1 Definicja operatora „i”(|*) Y|=K*T 24


1.0 Nowa algebra Boole’a

Algebra Kubusia to matematyczny opis języka potocznego (w tym matematyki i fizyki).

Algebra Kubusia zawiera w sobie nową algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) oraz „lub”(+) z języka potocznego człowieka.
Innymi słowy:
Aktualna algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q” definiowanych warunkami wystarczającymi => i koniecznymi ~>.

Definicja nowej algebry Boole’a na poziomie znaczków:
Nowa algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
1 = prawda
0 = fałsz
„nie”(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Spójniki logiczne zgodne z językiem potocznym:
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym

Dlaczego nowa algebra Boole’a?
1.
W algebrze Kubusia zachodzi tożsamość znaczków:
Spójnik „i”(*) z języka potocznego = bramka AND (*) w technice = koniunkcja (*) w matematyce
Spójnik „lub”(+) z języka potocznego = bramka OR(+) w technice = alternatywa (+) w matematyce
Dowód tego faktu na poziomie 5-cio latka znajdziemy w punkcie 1.9 (sterowanie windą).
2.
Stara algebra Boole’a nie zna kluczowych dla logiki matematycznej pojęć: logika dodatnia (bo p) i logika ujemna (bo ~p). Definicję znajdziemy w pkt. 1.1.1
3.
Stara algebra Boole'a jest wewnętrznie sprzeczna na poziomie funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y), co udowodnimy za chwilkę (pkt. 1.5.4 i 1.7)

1.1 Definicje elementarne algebry Boole'a

1 = prawda
0 = fałsz

Gdzie:
1##0
Prawda (1) jest różna na mocy definicji ## od fałszu (0)

Matematyczny związek wartości logicznych 1 i 0:
1 = ~0
0 = ~1
(~) - negacja

Innymi słowy:
Prawda (1) to zaprzeczenie (~) fałszu (0)
Fałsz (0) to zaprzeczenie (~) prawdy (1)

Definicja stałej binarnej:
Stała binarna to symbol mający w osi czasu stałą wartość logiczną (0 albo 1)

Pani w przedszkolu:
Pójdziemy do kina (K) lub nie pójdziemy do kina (~K)
Y = K+~K =1 - zdanie zawsze prawdziwe
Pójdziemy do kina (K) i nie pójdziemy do kina (~K)
Y = K*~K =0 - zdanie zawsze fałszywe
Gdzie:
Y - stała binarna

Definicja zmiennej binarnej:
Zmienna binarna to symbol, mogący w osi czasu przyjmować wyłącznie dwie wartości logiczne 0 albo 1.

Zachodzi tożsamość pojęć:
zmienna binarna = zmienna dwuwartościowa

1.1.1 Definicja negacji

Zero-jedynkowa tabela prawdy:
Zero-jedynkowa tabela prawdy to zapis wszystkich możliwych wartościowań zmiennych binarnych w postaci tabeli zero-jedynkowej.

W szczególnym przypadku symbol w nagłówku kolumny może być stałą binarną gdy w kolumnie są same jedynki albo same zera.
Kod:

DN
Definicja negacji:
   p # ~p
A: 1 #  0
B: 0 #  1
   1    2
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony

Definicja znaczka w logice matematycznej:
Znaczek w logice matematycznej to symbol zdefiniowany odpowiednią tabelą zero-jedynkową

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
p#~p
Dowodem jest tu definicja negacji DN.

Definicja zmiennej binarnej w logice dodatniej (bo p):
Zmienna binarna p wyrażona jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej mamy do czynienia ze zmienną binarną w logice ujemnej (bo ~p)

Zauważmy, że w definicji negacji DN symbole p i ~p są zmiennymi binarnymi.
Dowód:
W osi czasu (kolumna A1B1) może zajść przypadek, że zmienna binarna p przyjmie wartość logiczną 1 (A1) albo wartość logiczną 0 (B1).
W osi czasu (kolumna B2A2) może zajść przypadek, że zmienna binarna ~p przyjmie wartość logiczną 1 (B2) albo wartość logiczną 0 (A2)

Stąd mamy:
Definicja osi czasu w logice matematycznej
W dowolnej tabeli zero-jedynkowej oś czasu to zero-jedynkowa zawartość kolumny opisanej symbolem nad tą kolumną.

W logice matematycznej odpowiednikiem układu Kartezjańskiego są wykresy czasowe.
Dowód na przykładzie (strona 5):
Kod:
https://www.ti.com/lit/ds/symlink/sn54ls193-sp.pdf


1.1.2 Negator dwukierunkowy w bramkach logicznych

W technice cyfrowej znaczek różne # o definicji jak wyżej jest odpowiednikiem dwukierunkowego negatora „O”.
Zachodzi tożsamość znaczków: # = O
Kod:

Realizacja dwukierunkowego negatora „O” w bramkach logicznych
              -----
p --x-------->| ~ |o-x--> ~p
    |         -----  |
    |                |
    | p=~(~p) -----  |
    -<-------o| ~ |<-x--- ~p
              -----
Gdzie:
„O” - symbol dwukierunkowego negatora o budowie jak wyżej
"o"(~) - symbole negacji w technice „o” i w języku potocznym „~”
--->| - wejście bramki logicznej negatora (~)
|o--> - wyjście bramki logicznej negatora (~)
W świecie rzeczywistym musi tu być negator z otwartym kolektorem (OC)
na przykład typu SN7406. Wyjście OC musi być podparte rezystorem do Vcc.

W świecie rzeczywistym podajemy sygnały cyfrowe {0,1} na wejściu negatora p albo ~p obserwując co jest na jego wyjściu. Wszystko musi być zgodne z definicją DN.

Matematyczne związki między p i ~p:
a)
Dowolna strona znaczka # jest negacją drugiej strony
p#~p
b)
Prawo podwójnego przeczenia:
p=~(~p) - logika dodatnia (bo p) to zanegowana logika ujemna (bo ~p)
c)
Prawo zaprzeczenia logiki dodatniej (bo p):
~p=~(p) - logika ujemna (bo ~p) to zanegowana logika dodatnia (bo p)

Dowód w rachunku zero-jedynkowym:
Kod:

Matematyczne związki w definicji negacji:
   p ~p ~(~p) ~(p)
A: 1  0    1    0
B: 0  1    0    1
   1  2    3    4

Tożsamość kolumn 1=3 jest dowodem formalnym prawa podwójnego przeczenia:
p=~(~p)
Tożsamość kolumn 2=4 jest dowodem formalnym prawa negacji logiki dodatniej (bo p):
~p=~(p)

Uwaga:
Budowa dwukierunkowego transmitera w bramkach logicznych będzie identyczna jak wyżej lecz z układem SN7407 w miejsce układu SN7406.

1.2 Prawa Prosiaczka

I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo p) jest tożsama z fałszem (=0) w logice ujemnej (bo ~p)
(p=1) = (~p=0)
##
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo p) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~p)
(p=0) = (~p=1)

Gdzie:
## - różne na mocy definicji

Zauważmy, że negując dwustronnie I prawo Prosiaczka dalej będziemy w I prawie Prosiaczka bez możliwości przejścia do II prawa Prosiaczka, stąd znak różne na mocy definicji ##

Dowód:
I prawo Prosiaczka:
(p=1)=(~p=0)
Negujemy dwustronnie:
(~p=0)=(p=1) - dalej jesteśmy w I prawie Prosiaczka, bez możliwości dojścia do II prawa Prosiaczka

##

Identycznie będziemy mieli w II prawie Prosiaczka.
II prawo Prosiaczka:
(p=0)=(~p=1)
Negujemy dwustronnie:
(~p=1)=(p=0) - dalej jesteśmy w II prawie Prosiaczka, bez możliwości dojścia do I prawa Prosiaczka

Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ##:
Znaczek różne na mocy definicji ## to brak matematycznych powiązań między prawą i lewą stroną znaczka ##

Prawa Prosiaczka wiążą zmienną binarną w logice dodatniej (bo p) ze zmienną binarną w logice ujemnej (bo ~p). Prawa Prosiaczka możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej lub stałej binarnej.

Uwaga:
Prawa Prosiaczka mają swoją precyzyjną definicję zero-jedynkową w tabeli wszystkich możliwych operatorów jednoargumentowych (pkt. 1.4.2)
Linie A3B3 i A4B4 w tej tabeli to bezcenne zero-jedynkowe definicje praw Prosiaczka, czego dowód mamy wyżej.

1.2.1 Dowód praw Prosiaczka na gruncie fizyki

Rozważmy żarówkę istniejącą w naszym pokoju

Przyjmijmy znaczenie symboli:
S - żarówka świeci
~S - żarówka nie świeci
Równie dobrze można by przyjąć odwrotnie, ale nie byłoby to zgodne z językiem potocznym człowieka gdzie wszelkie przeczenia w kodowaniu matematycznym muszą być zapisane jawnie.

Dowód I prawa Prosiaczka na przykładzie:
A.
S - żarówka świeci
Co w logice jedynek oznacza:
S=1 - prawdą jest (=1) że żarówka świeci (S)
Zdanie tożsame na mocy prawa Prosiaczka:
(S=1)=(~S=0)
Czytamy:
~S=0 - fałszem jest (=0) że żarówka nie świeci (~S)
Prawdziwość I prawa Prosiaczka widać tu jak na dłoni:
(S=1) = (~S=0)

##

Dowód II prawa Prosiaczka na przykładzie:
B.
~S - żarówka nie świeci
Co w logice jedynek oznacza:
~S=1 - prawdą jest (=1) że żarówka nie świeci (~S)
Zdanie tożsame na mocy prawa Prosiaczka:
(~S=1)=(S=0)
Czytamy:
S=0 - fałszem jest (=0) że żarówka świeci (S)
Prawdziwość II prawa Prosiaczka widać tu jak na dłoni:
(~S=1) = (S=0)

Gdzie:
## - różne na mocy definicji

Innymi słowy:
Pojęcie "żarówka świeci" (S=1) jest różne na mocy definicji ## od pojęcia "żarówka nie świeci" (~S=1)

1.3 Fundamenty algebry Boole'a

Kluczowe znaczki algebry Boole’a to definicje spójników „i”(*) i „lub”(+) z języka potocznego człowieka.
Kod:

Definicja dwuargumentowego spójnika „i”(*):
   p* q  Y=p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 1  0
D: 0* 0  0
Y=1 <=> p=1 i q=1
inaczej:
Y=0

Kod:

Definicja dwuargumentowego spójnika „lub”(+):
   p+ q  Y=p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 1  1
D: 0+ 0  0
Y=1 <=> p=1 lub q=1
inaczej:
Y=0

Gdzie:
<=> - wtedy i tylko wtedy

1.3.1 Definicja funkcji logicznej algebry Boole'a:

Definicja wyrażenia algebry Boole'a:
Wyrażenie algebry Boole'a f(x) to zmienne binarne połączone spójnikami "i"(*) i "lub"(+)

Definicja funkcji logicznej algebry Boole'a:
Funkcja logiczna Y algebry Boole'a to zmienna binarna odzwierciedlająca binarne zmiany wyrażenia algebry Boole'a f(x) w osi czasu.

W technice funkcja algebry Boole'a to zwyczajowo duża litera Y.
Przykład:
f(x) - zapis ogólny dowolnie skomplikowanego i nieznanego wyrażenia algebry Boole’a
f(x)=p*q+~p*~q - definicja konkretnego wyrażenia algebry Boole’a
Tu zamiast x możemy wyliczyć wszystkie zmienne binarne tworzące funkcję logiczną w logice dodatniej (to wystarczy), ale nie jest to konieczne.
f(p, q) = p*q + ~p*~q - funkcja logiczna dwóch zmiennych binarnych p i q
Stąd na mocy definicji funkcji logicznej mamy:
Y = f(p, q) = p*q+~p*~q
Zapis tożsamy:
Y = p*q+~p*~q

W szczególnym przypadku funkcja logiczna Y może być stałą binarną, gdy w kolumnie opisującej symbol Y są same jedynki albo same zera.

Ogólna definicja dziedziny D:
Pojęcie ~x jest uzupełnieniem dla pojęcia x do wspólnej dziedziny D oraz pojęcia x i ~x są rozłączne
x+~x =D =1 - zdanie zawsze prawdziwe (stała binarna)
x*~x =[] =0 - zdanie zawsze fałszywe (stała binarna)

Definicja dziedziny w zbiorach:
Zbiór ~p jest uzupełnieniem zbioru p do wspólnej dziedziny D oraz zbiory p i ~p są rozłączne.
Czyli:
Y = p+~p =D =1 - zdanie zawsze prawdziwe (stała binarna)
Y = p*~p =[] =0 - zdanie zawsze fałszywe (stała binarna)
W algebrze Kubusia zdanie zawsze prawdziwe (Y=1) oraz zdanie zawsze fałszywe (Y=0) to bezużyteczne śmieci zarówno w matematyce, jak i w języku potocznym

Dowód na przykładzie.
Rozważmy dwa zbiory:
TP - zbiór trójkątów prostokątnych (TP)
~TP - zbiór trójkątów nieprostokątnych (~TP)
Wspólna dziedzina:
ZWT - zbiór wszystkich trójkątów

Definicja dziedziny w zbiorach:
Zbiór ~TP jest uzupełnieniem zbioru TP do wspólnej dziedziny ZWT oraz zbiory TP i ~TP są rozłączne w dziedzinie ZWT.

Czyli:
Twierdzenie T1:
Dowolny trójkąt jest prostokątny (TP) lub nie jest prostokątny (~TP)
Y = TP+~TP = ZWT =1 - zdanie zawsze prawdziwe (stała binarna)

Twierdzenie T2:
Dowolny trójkąt jest prostokątny (TP) i nie jest prostokątny (~TP)
Y = TP*~TP =[] =0 - zdanie zawsze fałszywe (stała binarna)

Wartość matematyczna twierdzeń T1 i T2 jest zerowa (śmieci).

Analogia do programowania:
Nie da się napisać najprostszego nawet programu dysponując wyłącznie stałymi binarnymi, o z góry wiadomej wartości logicznej.

Definicja bramki logicznej:
Bramka logiczna to układ cyfrowy o n wejściach binarnych {p,q,r..} i tylko jednym wyjściu binarnym Y

Matematycznie zachodzi tożsamość:
funkcja logiczna Y = wyjście bramki logicznej Y

Zwyczajowe zmienne binarne w technice to:
p, q, r … - wejścia bramki logicznej
Y - wyjście bramki logicznej

Przykład:
Y = f(p,q) = p*q+~p*~q
Zapis tożsamy:
Y = p*q+~p*~q

1.3.2 Prawo negacji funkcji logicznej Y

Definicja funkcji logicznej w logice dodatniej (bo Y):
Funkcja logiczna Y zapisana jest w logice dodatniej wtedy i tylko wtedy gdy nie jest zanegowana.
W przeciwnym przypadku mamy do czynienia z funkcją logiczną w logice ujemnej (bo ~Y)

Prawo negacji funkcji logicznej Y:
Dowolną funkcję logiczną w logice dodatniej (bo Y) wolno nam dwustronnie zanegować przechodząc do funkcji logicznej w logice ujemnej (bo ~Y) i odwrotnie.

1.3.3 Ogólna definicja logiki matematycznej

Ogólna definicja logiki matematycznej:
Logika matematyczna to matematyczny opis nieznanego tzn. nieznanej przyszłości albo nieznanej przeszłości.
Nie wszystko w czasie przeszłym jest nam wiadome - logika matematyczna służy tu do ustalenia co się w przeszłości zdarzyło
Przykład: poszukiwanie mordercy

Weźmy następujące zdanie w czasie przeszłym:
A1.
Jeśli wczoraj padało to na 100% => było pochmurno
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury

Powyższe zdanie podlega pod definicję logiki matematycznej wtedy i tylko wtedy gdy nie znamy zaistniałego faktu
Dowód:
W świecie zdeterminowanym jeśli znamy fakty to nic się z tym nie da zrobić tzn. nie istnieje logika matematyczna która by zmieniła zaistniały fakt.

Przykłady ze świata zdeterminowanego:
1.
Wiemy kim był Hitler i co zrobił.
Czy możliwe jest matematyczne cofnięcie czasu i spowodowanie by Hitler zginał w jednym z zamachów na jego życie przed rokiem 1933?
Jak wtedy potoczyła by się historia ludzkości?
2.
Załóżmy zaistniały fakt znany wszystkim w Warszawie:
A1”.
Wczoraj nie padało i nie było pochmurno
Y = ~P*~CH - wczoraj nie padało (~P) i nie było pochmurno (~CH), znany, zaistniały fakt
Oczywistym jest, że nie istnieje logika matematyczna która by zmieniła zaistniały fakt.
Dla tego zdeterminowanego przypadku zdanie A1 będzie fałszem, prawdziwe będzie wyłącznie zdanie A1”
Dowód w tabeli zer-jedynkowej przez wszystkie możliwe zdarzenia rozłączne:
Kod:

   P CH  Y=~P*~CH
A: 1  1  =0 - fałszem jest (0), że padało P=1 i było pochmurno CH=1
B: 0  1  =0 - fałszem jest (0), że nie padało P=0 i było pochmurno CH=1
C: 1  0  =0 - fałszem jest (0), że padało P=1 i nie było pochmurno CH=0
D: 0  0  =1 - prawdą jest (1), że nie padało P=0 i nie było pochmurno CH=0

Prawo Nietoperza:
Jeśli znamy zaistniałe w przeszłości fakty, to logika matematyczna nie ma tu nic do roboty - jest psu na budę potrzebna.

Dowód na przykładzie:
Po długich poszukiwaniach mordercy, Kowalskiemu udowodniono zabójstwo x-a, i się do tego przyznał.
Po co komu potrzebna jest tu dalsza logika matematyczna prowadząca do wykrycia znanego już wszystkim zabójcy x-a?

1.4 Definicja funkcji logicznej jednoargumentowej Y=x

Prawo Lwa:
Warunkiem koniecznym zrozumienia logiki matematycznej jest jej znajomość na poziomie funkcji logicznych jednoargumentowych.

Zainteresowanym szczegółami polecam teorię operatorów jednoargumentowych w rachunku zero-jedynkowym zawartą w punkcie 20.0

W najprostszym przypadku mamy do czynienia z funkcją logiczną jednej zmiennej binarnej x
Y=x
Gdzie:
x = {p, ~p, 1, 0}

Definicja funkcji logicznej jednoargumentowej Y=x
Funkcja logiczna jednoargumentowa Y=x to odpowiedź na pytanie o Y.

Kiedy zajdzie Y?
A1.
Y=x
Zajdzie Y wtedy i tylko wtedy gdy zajdzie x
Gdzie:
x = {p, ~p, 1, 0}

Wszystkie możliwe funkcje jednoargumentowe to:
Y=p - transmisja, na wyjściu Y mamy zawsze niezanegowany sygnał p
Y=~p - negacja, na wyjściu Y mamy zawsze zanegowany sygnał p (~p)
Y=1 - stała binarna, na wyjściu Y mamy zawsze 1
Y=0 - stała binarna, na wyjściu Y mamy zawsze 0

Zdanie zawsze prawdziwe (Y=1) i zdanie zawsze fałszywe (Y=0) to matematyczne śmieci co udowodniono w pkt. 1.3.1, dlatego te przypadki mało nas interesują.

1.4.1 Definicja operatora logicznego jednoargumentowego Y|=x

Definicja operatora logicznego jednoargumentowego Y|=x:
Operator logiczny jednoargumentowy Y|=x to układ równań logicznych Y=x i ~Y=~x dający odpowiedź na pytanie kiedy zajdzie Y, a kiedy zajdzie ~Y

Kiedy zajdzie Y?
A1.
Y=x
Zajdzie Y wtedy i tylko wtedy gdy zajdzie x
#
.. a kiedy zajdzie ~Y?
Negujemy dwustronnie jednoargumentową funkcję logiczną A1.
B1.
~Y = ~x
Zajdzie ~Y wtedy i tylko wtedy gdy zajdzie ~x
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

1.4.2 Tabela wszystkich możliwych operatorów jednoargumentowych

Zapiszmy wszystkie możliwe operatory jednoargumentowe w tabeli prawdy
Kod:

TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1:  Y= p         #  B1: ~Y=~p
    ##                   ##
Operator negacji Y=|~p
A2:  Y=~p         #  B2: ~Y= p
    ##                   ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3:  Y=1          #  B3: ~Y=0
    ##                   ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4:  Y=0          #  B4: ~Y=1
Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej

Doskonale widać, że w tabeli TJ definicje obu znaczków # i ## są perfekcyjnie spełnione.

Linie A3B3 i A4B4 to bezcenne zero-jedynkowe definicje prawa Prosiaczka, czego dowód znajdziemy w punkcie 1.2.
Znaczenie alternatywne:
Linie A3B3 i A4B4 to stałe binarne, w logice matematycznej totalnie bezużyteczne czego dowód mieliśmy w punkcie 1.3.1.

1.5 Funkcje Y=x i operatory Y|=x jednoargumentowe

Z tabeli wszystkich możliwych operatorów jednoargumentowych zajmiemy się wyłącznie liniami A1A2 i B1B2.

1.5.1 Definicja funkcji transmisji Y=p i operatora transmisji Y|=p

Definicja transmitera:
Transmiter to bramka logiczna jednowejściowa gdzie na wyjście Y transmitowany jest zawsze niezanegowany sygnał wejściowy p (Y=p)

Realizacja rzeczywista:
SN7407 (Strona 1: Y=p)
Kod:
https://www.ti.com/lit/ds/symlink/sn7407.pdf


Definicja matematyczna:
Funkcja logiczna transmitera Y=p w logice dodatniej (bo Y) to funkcja definiowana tabelą prawdy:
Kod:

FT
Funkcja transmisji Y=p
Wejście |Wyjście
        | A1:
p # ~p  | Y=p
1 #  0  | 1
0 #  1  | 0
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Na wyjściu Y mamy tu zawsze niezanegowany sygnał p (Y=p)

Definicja operatora transmisji Y|=p:
Operator transmisji Y|=p to układ równań logicznych Y=p i ~Y=~p dający odpowiedź na pytanie o Y i ~Y

Zobaczmy to w tabeli zero-jedynkowej:
Kod:

OT
Definicja operatora transmisji: Y|=p
Wejście    |Wyjście
           | A1:   B1:
   p # ~p  | Y=p # ~Y=~p
A: 1 #  0  | 1   #  0
B: 0 #  1  | 0   #  1
   1    2    3      4
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Doskonale tu widać że:
A1:
Y=p
co w logice jedynek oznacza:
Y=1 <=> p=1
#
… kiedy zajdzie ~Y?
Negujemy dwustronnie równanie A1.
B1:
~Y=~p
co w logice jedynek oznacza:
~Y=1 <=> ~p=1

1.5.2 Definicja funkcji negacji Y=~p i operatora negacji Y|=~p

Definicja negatora:
Negator to bramka logiczna jednowejściowa gdzie na wyjście Y transmitowany jest zawsze zanegowany sygnał wejściowy p (Y=~p)

Realizacja rzeczywista:
SN7406 (strona 2: Y=~p)
Kod:
https://www.ti.com/lit/ds/symlink/sn7406.pdf


Definicja matematyczna:
Funkcja logiczna negatora Y=~p to funkcja definiowana tabelą prawdy:
Kod:

FN
Funkcja negatora Y=~p
Wejście |Wyjście
        | A2:
p # ~p  | Y=~p
1 #  0  | 0
0 #  1  | 1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Na wyjściu Y mamy tu zawsze zanegowany sygnał p (Y=~p)

Definicja operatora negacji Y|=~p:
Operator negacji Y|=~p to układ równań logicznych Y=~p i ~Y=p dający odpowiedź na pytanie o Y i ~Y

Zobaczmy to w tabeli zero-jedynkowej:
Kod:

ON
Definicja operatora negacji: Y|=~p
Wejście    |Wyjście
           | A2:    B2:
   p # ~p  | Y=~p # ~Y=p
A: 1 #  0  | 0    #  1
B: 0 #  1  | 1    #  0
   1    2    3       4
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Doskonale tu widać że:
A2:
Y=~p
co w logice jedynek oznacza:
Y=1 <=> ~p=1
#
… kiedy zajdzie ~Y?
Negujemy dwustronnie równanie A2.
B2:
~Y=p
co w logice jedynek oznacza:
~Y=1 <=> p=1

1.5.3 Relacja matematyczna między operatorami Y|=p a Y|=~p

Kod:

OT
Zamknięty świat operatora transmisji Y|=p
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
        | A1:   B1:
p # ~p  | Y=p # ~Y=~p
1 #  0  | 1   #  0
0 #  1  | 0   #  1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora negacji Y|=~p
nie ma prawa znaleźć się w operatorze transmisji Y|=p

##
Kod:

ON
Zamknięty świat operatora negacji Y|=~p
Definicja operatora negacji: Y|=~p
Wejście |Wyjście
        | A2:    B2:
p # ~p  | Y=~p # ~Y=p
1 #  0  | 0    #  1
0 #  1  | 1    #  0
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora transmisji Y|=p
nie ma prawa znaleźć się w operatorze negacji Y|=~p

Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
Zmienne p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Zauważmy, że jeśli pominiemy nagłówki albo uwzględnimy wyłącznie prawe strony funkcji logicznych Y i ~Y to kolumna A1 będzie tożsama z kolumną B2.

Jeśli uwzględnimy nagłówki to relacja kolumn A1 i B2 nie będzie tożsamościowa mimo że zero-jedynkowo kolumny te są identyczne.
A1: Y=p ## B2: ~Y=p
Gdzie:
## - różne na mocy definicji

Zapiszmy tabele OT i ON w symbolicznej tabeli prawdy:
Kod:

OTON:
A1: Y= p # B1: ~Y=~p
    ##         ##
A2: Y=~p # B2: ~Y= p

Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
Zmienne p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej

Tożsama definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne w tej samej logice, dodatniej (bo Y) albo ujemnej (bo ~Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy prawe strony tych funkcji nie są tożsame.
Kod:

A1: Y= p ## A2: Y=~p
B1:~Y=~p ## B2:~Y= p
Gdzie:
## - różne na mocy definicji

W tabeli OTON widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Doskonale też widać, że wprowadzenie do logiki matematycznej funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) wymusza wprowadzenie do logiki matematycznej znaczków # i ##

1.5.4 Prawo Grzechotnika dla funkcji jednoargumentowych

Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć
Alfred Hitchcock.


Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

Dowód:
Aktualny rachunek zero-jedynkowy ziemskich matematyków operuje tylko i wyłącznie na wyrażeniach algebry Boole’a, czyli na prawych stronach funkcji logicznych Y i ~Y.
Innymi słowy:
Ziemscy matematycy operując w rachunku zero-jedynkowym wyłącznie na prawych stronach funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) z definicji usuwają zewsząd wszelkie funkcje Y i ~Y.

Usuńmy zatem wszystkie funkcje logiczne Y i ~Y z tabeli OTON
Kod:

OTON":
A1:  p # B1: ~p
A2: ~p # B2:  p
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Doskonale widać, że w tabeli OTON" najważniejszy znaczek logiki matematycznej, znaczek różne na mocy definicji ## został zgwałcony, bo ewidentnie zachodzą tożsamości po przekątnych.
W tabeli OTON” zgubiona została kluczowa informacja o tym kiedy zajdzie Y, a kiedy zajdzie ~Y.
To jest dowód wewnętrznej sprzeczności wszelkich ziemskich logik matematycznych.

1.5.5 Prawo Sokoła

Z chwilą zaakceptowania przez ziemskich matematyków algebry Kubusia która widzi funkcje logiczne w logice dodatniej (bo Y) i ujemnej (bo ~Y) prawo Grzechotnika zostanie zastąpione prawem Sokoła.

Prawo Sokoła:
Algebra Kubusia, która widzi funkcje logiczne w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie niesprzeczna na poziomie funkcji logicznych.

W punkcie 24.0 znajdziemy dużą ilość ćwiczeń w temacie prawa Grzechotnika, które obowiązuje dla dowolnych funkcji logicznych n-argumentowych.

1.6 Definicja standardu dodatniego w języku potocznym

Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka

Przykład konsekwentnego stosowania standardu dodatniego w języku potocznym mamy w następnym punkcie.

1.7 Prawo Grzechotnika na przykładzie zrozumiałym dla 5-cio latka

Kod:

OT
Zamknięty świat operatora transmisji Y|=p
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
        | A1:   B1:
p # ~p  | Y=p # ~Y=~p
1 #  0  | 1   #  0
0 #  1  | 0   #  1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora negacji Y|=~p
nie ma prawa znaleźć się w operatorze transmisji Y|=p

##
Kod:

ON
Zamknięty świat operatora negacji Y|=~p
Definicja operatora negacji: Y|=~p
Wejście |Wyjście
        | A2:    B2:
p # ~p  | Y=~p # ~Y=p
1 #  0  | 0    #  1
0 #  1  | 1    #  0
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora transmisji Y|=p
nie ma prawa znaleźć się w operatorze negacji Y|=~p

Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
Zmienne p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

W niniejszym punkcie zajmiemy się dowodem prawa Grzechotnika dla funkcji jednoargumentowych Y=p i Y=~p na konkretnym przykładzie, doskonale rozumianym przez każdego 5-cio latka.

Zadanko Kubusia:
Dane są dwa zdania pań przedszkolanek z dwóch różnych przedszkoli A1 i A2.

Pani w przedszkolu A1:
A1.
Jutro pójdziemy do kina

Pani w przedszkolu A2:
A2.
Jutro nie pójdziemy do kina

Treść polecenia:
Zapisz w funkcjach logicznych kiedy panie dotrzymają słowa a kiedy skłamią?

Rozwiązanie Jasia, ucznia I klasy LO w 100-milowym lesie.

Niezbędna teoria:
Kod:

OT
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
        | A1:   B1:
p # ~p  | Y=p # ~Y=~p
Przykład który za chwilkę zrobimy p=K:
K # ~K  | Y=K # ~Y=~K
1 #  0  | 1   #  0
0 #  1  | 0   #  1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Pani w przedszkolu A1:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
#
Kiedy pani nie dotrzyma słowa (~Y=1)?
Negujemy równanie A1 stronami:
B1.
~Y=~K
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)

##

Niezbędna teoria:
Kod:

ON
Definicja operatora negacji: Y|=~p
Wejście |Wyjście
        | A2:    B2:
p # ~p  | Y=~p # ~Y=p
Przykład który za chwilkę zrobimy p=K:
K # ~K  | Y=~K # ~Y=K
1 #  0  | 0    #  1
0 #  1  | 1    #  0
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Pani w przedszkolu A2:
A2.
Jutro nie pójdziemy do kina
Y=~K
co w logice jedynek oznacza:
Y=1 <=> ~K=1 - doskonale to widać w tabeli ON
Czytamy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
#
Kiedy pani nie dotrzyma słowa (~Y=1)?
Negujemy równanie A2 dwustronnie.
~Y=K
Stąd mamy:
B2.
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
~Y=K
co w logice jedynek oznacza:
~Y=1 <=> K=1 - doskonale to widać w tabeli ON
Czytamy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)

Gdzie:
Zmienne Y i K muszą być wszędzie tymi samymi zmiennymi, inaczej błąd podstawienia
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Znaczenie zmiennych Y i K w logice dodatniej (bo p) i ujemnej (bo ~p):
Y - pani dotrzyma słowa (Y=1)
~Y - pani nie dotrzyma słowa (~Y=1)
K - jutro pójdziemy do kina (K=1)
~K - jutro nie pójdziemy do kina (~K=1)

Definicja dziedziny D dla zdarzeń:
Dziedzina D dla zdarzeń to zbiór wszystkich możliwych zdarzeń jakie mogą wystąpić
K+~K =D =1 - zdanie zawsze prawdziwe (stała binarna)
K*~K =[] =0 - zdanie zawsze fałszywe (stała binarna)
Zauważmy, że pojęcia K (kino) i ~K (nie kino) nie są zdaniami.
Zdaniami są dopiero funkcje logiczne Y=x

Matematycznie zachodzi:
Kod:

Zdarzenie x ## funkcja logiczna Y=x
Gdzie:
x={K,~K} - zmienne wejściowe dla funkcji logicznej Y=x
## - różne na mocy definicji

Zapiszmy dialogi pań z przedszkola A1 i A2 w tabeli prawdy:
Kod:

T1
Pani w przedszkolu A1:
A1: Y= K   #  B1: ~Y=~K
    ##            ##
Pani w przedszkolu A2:
A2: Y=~K   #  B2: ~Y= K

Matematycznie zachodzi tożsamość:
~Y=~(Y)
~K=~(K)
Stąd mamy:
K, Y muszą być wszędzie tymi samymi K, Y inaczej błąd podstawienia

Definicja znaczka #:
Dowolna strona znaczka # jest negacją drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Jak widzimy wyżej, wprowadzenie do logiki matematycznej funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) wymusza wprowadzenie do logiki matematycznej znaczków # i ##

1.7.1 Dowód prawa Grzechotnika na poziomie przedszkola

Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

Dowód:
Aktualny rachunek zero-jedynkowy ziemskich matematyków operuje tylko i wyłącznie na wyrażeniach algebry Boole’a, czyli na prawych stronach funkcji logicznych Y i ~Y.
Innymi słowy:
Ziemscy matematycy operując w rachunku zero-jedynkowym wyłącznie na prawych stronach funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) z definicji usuwają zewsząd wszelkie funkcje Y i ~Y.

Usuńmy zatem wszystkie funkcje logiczne Y i ~Y z tabeli T1.
Kod:

T1"
Pani w przedszkolu A1:
A1:  K   #  B1: ~K
Pani w przedszkolu A2:
A2: ~K   #  B2:  K
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Doskonale widać, że w tabeli T1" najważniejszy znaczek logiki matematycznej, znaczek różne na mocy definicji ## został zgwałcony, bo ewidentnie zachodzą tożsamości po przekątnych.
To jest dowód wewnętrznej sprzeczności wszelkich ziemskich logik matematycznych.

Z chwilą zaakceptowania przez ziemskich matematyków algebry Kubusia która widzi funkcje logiczne w logice dodatniej (bo Y) i ujemnej (bo ~Y) prawo Grzechotnika zostanie zastąpione prawem Sokoła.

1.7.2 Prawo Sokoła

Prawo Sokoła:
Algebra Kubusia, która widzi funkcje logiczne w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie niesprzeczna na poziomie funkcji logicznych.

1.7.3 Definicja poprawnej budowy funkcji logicznej Y

Zapiszmy jeszcze raz początek dialogu z przedszkola A1.

Pani w przedszkolu A1:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1
Czytamy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)

Sprawdźmy, czy poprawny jest następujący zapis funkcji logicznej A1:
A1”: Y=1 <=> K
Sprawdźmy, czy możliwe jest przejście z zapisem A1" do logiki ujemnej (bo ~Y=1).
1.
Negujemy dwustronnie zapis A1":
B1": ~Y=0 <=> ~K
Na mocy prawa Prosiaczka mamy:
(~Y=0) = (Y=1)
Stąd mamy:
B1”: Y=1 <=> ~K
Wniosek:
Niemożliwe jest przejście z równaniem A1” do logiki ujemnej (bo ~Y=1)
cnd

Stąd mamy:
Definicja poprawnej budowy funkcji logicznej Y:
Funkcja logiczna Y jest poprawnie zbudowana wtedy i tylko wtedy gdy operuje na zmiennych binarnych, czyli nie zawiera choćby jednego wartościowania jakiejkolwiek zmiennej binarnej.

Przykład:
Y=K - to jest poprawnie zbudowana funkcja logiczna Y
Y=1 <=> K - to jest fałszywa funkcja logiczna Y

Identycznie będziemy mieli dla dowolnej funkcji n-argumentowej.

To jest poprawnie zapisana funkcja logiczna dwuargumentowa:
Y=p*q+~p*~q

To jest błędnie zapisana funkcja logiczna dwuargumentowa:
Y=1 <=> p*q + ~p*~q
bo zawiera jedno wartościowanie zmiennej binarnej (tu Y) co wystarczy, aby uznać ją za fałszywą funkcję logiczną Y.


1.8 Definicja funkcji logicznej Y=f(x) definiowanej spójnikami „i”(*) i „lub”(+)

Definicja funkcji logicznej w logice dodatniej (bo Y):
Funkcja logiczna Y zapisana jest w logice dodatniej wtedy i tylko wtedy gdy nie jest zanegowana.
W przeciwnym przypadku mamy do czynienia z funkcją logiczną w logice ujemnej (bo ~Y)

Definicja funkcji logicznej Y=f(x):
Funkcja logiczna Y=f(x) to odpowiedź na pytanie o Y
1.
Kiedy zajdzie Y?
Y=f(x) - zajdzie Y wtedy i tylko wtedy gdy zajdzie f(x)

1.8.1 Definicja operatora Y|=f(x) definiowanego spójnikami „i”(*) i „lub”(+)

Definicja operatora Y|=f(x) definiowanego spójnikami „i”(*) i „lub”(+):
Operator logiczny Y|=f(x) to układ równań logicznych 1 i 2 dający odpowiedź na pytanie o Y i ~Y

Definicja funkcji logicznej Y=f(x):
Funkcja logiczna Y=f(x) to odpowiedź na pytanie o Y
1.
Kiedy zajdzie Y?
Y=f(x) - zajdzie Y wtedy i tylko wtedy gdy zajdzie f(x)
#
Kiedy zajdzie ~Y?
Negujemy dwustronnie funkcję logiczną 1:
2.
~Y=~f(x) - zajdzie ~Y wtedy i tylko wtedy gdy zajdzie ~f(x)
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

W dalszej części omówimy na przykładach najważniejsze definicje spójników logicznych i operatorów logicznych dwuargumentowych.

1.9 Definicja spójnika „lub”(+) Y=K+T

Definicja spójnika „lub”(+) Y=K+T:
Spójnik „lub”(+) Y=K+T to odpowiedź na pytanie o Y (dotrzymanie słowa):

Pani w przedszkolu:
1.
Jutro pójdziemy do kina lub do teatru
Y=K+T
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K) lub do teatru (T)

1.9.1 Definicja operatora „lub”(|+) Y|=K+T

Definicja operatora „lub”(|+) Y|=K+T:
Operator „lub”(|+) Y|=K+T to odpowiedź na pytanie o Y i ~Y:

Definicja spójnika „lub”(+) Y=K+T:
Spójnik „lub”(+) Y=K+T to odpowiedź na pytanie o Y (dotrzymanie słowa):

Pani w przedszkolu:
1.
Jutro pójdziemy do kina lub do teatru
Y=K+T
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K) lub do teatru (T)

Innymi słowy:
Wystarczy, że pójdziemy w dowolne miejsce i już pani dotrzyma słowa (Y).
Stąd wszystkie zdarzenia rozłączne w których pani dotrzyma słowa (Y) to:
1”: Y = A: K*T + B: K*~T + C: ~K*T
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
Ya=A: K*T=1 - jutro pójdziemy do kina (K) i pójdziemy do teatru (T)
lub
Yb=B: K*~T=1 - jutro pójdziemy do kina (K) i nie pójdziemy do teatru (~T)
lub
Yc=C: ~K*T=1 - jutro nie pójdziemy do kina (~K) i pójdziemy do teatru (T)
Wszystkie możliwe przypadki w których pani dotrzyma słowa (Y) to suma logiczna funkcji cząstkowych:
Y = Ya+Yb+Yc

#

Kiedy pani nie dotrzyma słowa (~Y)?
Negujemy dwustronnie funkcję logiczną 1.
~Y = ~(K+T) = ~K*~T - na mocy prawa De Morgana.
Stąd mamy:
2.
D: ~Y=~K*~T
Czytamy:
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K) i nie pójdziemy do teatru (~T).

Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Kod:

1: Y=K*T # 2: ~Y=~K*~T

Znaczenie zmiennej binarnej Y:
Y - pani dotrzyma słowa Y
~Y - pani nie (~) dotrzyma słowa Y

Bonus:
Dowód „nie wprost” serii zdarzeń rozłącznych w których pani dotrzyma słowa (Y).
Zauważmy, że zdanie 2 to jedno, jedyne zdarzenie w którym pani nie dotrzyma słowa (~Y):
2: ~Y=~K*~T
W pozostałych rozłącznych zdarzeniach możliwych pani na 100% dotrzyma słowa (Y).
Te pozostałe rozłączne zdarzenia możliwe to:
1”: Y = A: K*T + B: K*~T + C: ~K*T
cnd

1.10 Definicja spójnika „i”(*) Y=K*T

Definicja spójnika „i”(*) Y=K*T:
Spójnik „i”(*) Y=K*T to odpowiedź na pytanie o Y (dotrzymanie słowa):

Pani w przedszkolu:
1.
Jutro pójdziemy do kina i do teatru
A: Y=K*T
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K) i pójdziemy do teatru (T)

1.10.1 Definicja operatora „i”(|*) Y|=K*T

Definicja operatora „i”(|*) Y|=K*T:
Operator „i”(|*) Y|=K*T to odpowiedź na pytanie o Y i ~Y:

Definicja spójnika „i”(*) Y=K*T:
Spójnik „i”(*) Y=K*T to odpowiedź na pytanie o Y (dotrzymanie słowa):

Pani w przedszkolu:
1.
Jutro pójdziemy do kina i do teatru
A: Y=K*T
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K) i pójdziemy do teatru (T)

#

Kiedy pani nie dotrzyma słowa (~Y)?
Negujemy dwustronnie funkcję logiczną 1.
~Y = ~(K*T) = ~K+~T - na mocy prawa De Morgana
Stąd mamy:
2.
~Y=~K+~T
Czytamy:
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K) lub nie pójdziemy do teatru (~T).

Wystarczy że nie pójdziemy w dowolne miejsce i już pani nie dotrzyma słowa (~Y).
Stąd:
Wszystkie możliwe przypadki w zdarzeniach rozłącznych w których pani nie dotrzyma słowa (~Y) to:
2”: ~Y = B: ~K*~T + C: ~K*T + D: K*~T
Czytamy:
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy:
~Yb=A: ~K*~T=1 - jutro nie pójdziemy do kina (~K) i nie pójdziemy do teatru (~T)
lub
~Yc=C: ~K*T=1 - jutro nie pójdziemy do kina (~K) i pójdziemy do teatru (T)
lub
~Yd=D: K*~T=1 - jutro pójdziemy do kina (K) i nie pójdziemy do teatru (~T)
Wszystkie możliwe przypadki w których pani nie dotrzyma słowa (~Y) to suma logiczna funkcji cząstkowych:
~Y = ~Yb+~Yc+~Yd

Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Kod:

1: Y=K*T # 2: ~Y=~K+~T

Znaczenie zmiennej binarnej Y:
Y - pani dotrzyma słowa Y
~Y - pani nie (~) dotrzyma słowa Y

Bonus:
Dowód „nie wprost” serii zdarzeń rozłącznych w których pani nie dotrzyma słowa (~Y).
Zauważmy, że zdanie 1 to jedno, jedyne zdarzenie w którym pani dotrzyma słowa (Y):
1: Y=K*T
W pozostałych rozłącznych zdarzeniach możliwych pani na 100% nie dotrzyma słowa (Y).
Te pozostałe rozłączne zdarzenia możliwe to:
2”: ~Y = B: ~K*~T + C: ~K*T + D: K*~T
cnd


Ostatnio zmieniony przez rafal3006 dnia Śro 22:13, 08 Maj 2024, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:22, 07 Maj 2024    Temat postu:

Algebra Kubusia dla matematyków
2.0 Kompendium algebry Kubusia

Spis treści
2.0 Kompendium algebry Kubusia 2
2.1 Skorowidz definicji implikacyjnych algebry Kubusia 2
2.2 Elementarne spójniki implikacyjne w zdarzeniach 2
2.2.1 Definicja zdarzenia możliwego ~~> 2
2.2.2 Definicja warunku wystarczającego => w zdarzeniach 3
2.2.3 Definicja warunku koniecznego ~> w zdarzeniach 4
2.2.4 Definicja kontrprzykładu w zdarzeniach 6
2.3 Elementarne spójniki implikacyjne w zbiorach 6
2.3.1 Definicja elementu wspólnego zbiorów ~~> 7
2.3.2 Definicja warunku wystarczającego => w zbiorach 7
2.3.3 Definicja warunku koniecznego ~> w zbiorach 8
2.3.4 Definicja kontrprzykładu w zbiorach 9
2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~> 10
2.5 Prawa algebry Kubusia wynikłe z rachunku zero-jedynkowego 13
2.5.1 Definicje znaczków # i ## 15
2.6 Fundamentalne definicje i prawa algebry Kubusia 16
2.6.1 Prawa Sowy 16
2.6.2 Definicja tożsamości logicznej 16
2.6.3 Definicja dowodu "nie wprost" w algebrze Kubusia 16
2.6.4 Prawa Prosiaczka 17
2.7 Prawo Kłapouchego - kluczowe prawo logiki matematycznej 17
2.7.1 Definicja podstawowego spójnika implikacyjnego 17
2.7.2 Prawo Kłapouchego i prawo Kameleona w implikacji prostej p|=>q 18
2.7.3 Prawo Kłapouchego w implikacji odwrotnej p|~>q 20
2.7.4 Nietrywialny błąd podstawienia ### 21
2.8 Prawa Słonia 22
2.8.1 Prawo Słonia dla zbiorów 23
2.8.2 Prawo Słonia dla zdarzeń 25
2.9 Prawo Irbisa 26
2.9.1 Prawo Irbisa dla zbiorów 26
2.9.2 Prawo Irbisa dla zdarzeń 29


2.0 Kompendium algebry Kubusia

Niniejszy punkt to kompendium algebry Kubusia zawierające wszystkie potrzebne definicje i prawa algebry Kubusia konieczne i wystarczające do zrozumienia matematycznej obsługi zdań warunkowych "Jeśli p to q" zarówno na gruncie teorii zdarzeń, jak i na gruncie teorii zbiorów.

2.1 Skorowidz definicji implikacyjnych algebry Kubusia

Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>

Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki logiczne w zdarzeniach:

~~> - spójnik zdarzenia możliwego (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Elementarne spójniki logiczne w zbiorach:
~~> - element wspólny zbiorów (2.3.1)
=> - warunek wystarczający tożsamy z relacją podzbioru =>(2.3.2)
~> - warunek konieczny tożsamy z relacją nadzbioru ~>(2.3.3)
2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:

|=> - implikacja prosta (2.12)
|~> - implikacja odwrotna (2.13)
<=> - równoważność (2.14)
|~~> - chaos (2.15)
3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi

||=> - operator implikacji prostej (2.12.1)
||~> - operator implikacji odwrotnej (2.13.1)
|<=> - operator równoważności (2.14.1)
||~~> - operator chaosu (2.15.1)

2.2 Elementarne spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń/zbiorów p i q

2.2.1 Definicja zdarzenia możliwego ~~>

Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Kod:

Zero-jedynkowa definicja zdarzenia możliwego ~~>:
   p  q p~~>q = p*q + p*~q + ~p*~q + ~p*q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =1
Interpretacja:
p~~>q=p*q=1 - wtedy i tylko wtedy
              gdy możliwe jest jednoczesne ~~> zajście zdarzeń p i q
Inaczej:
p~~>q=p*q=0

Przykład:
Jeśli jutro będzie pochmurno (CH) to może ~~> nie padać (~P)
CH~~>~P=CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH) i nie pada (~P)

2.2.2 Definicja warunku wystarczającego => w zdarzeniach

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

W zapisie formalnym mamy tu:
p=P (pada)
q=CH (chmurka)
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")

Podsumowując:
Kod:

Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q =~p+q
Zapis aktualny (przykład):
A1: p=P
A1: q=CH
A1: P=>CH=~P+CH

Można łatwo udowodnić, iż zdarzenie P (pada) jest podzbiorem => zdarzenia CH (chmury).

Dowód:
Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>
p=>q
1.
Prawo algebry Boole'a:
p=p*1
q=q*1
Stąd mamy:
p*1=>q*1
2.
Korzystamy z definicji wspólnej dziedziny dla p i q:
p+~p=D =1
q+~q=D =1
stąd mamy:
p*(q+~q) => q*(p+~p)
3.
Wymnażamy wielomiany logiczne:
p*q + p*~q => p*q + ~p*q
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Nasz przykład:
p=P(pada)
q=CH(chmury)
Podstawiając do 3 mamy:
4.
P*CH + P*~CH => P*CH + ~P*CH
Badamy możliwość ~~> wystąpienie wszystkich zdarzeń:
P*CH=1 - możliwe jest (=1) zdarzenie: P(pada) i są CH(chmury)
P*~CH=0 - niemożliwe jest (=0) zdarzenie: P(pada) i nie ma chmur (~CH)
~P*CH=1 - możliwe jest (=1) zdarzenie: nie pada (~P) i są chmury (CH)
Stąd:
P*CH => P*CH + ~P*CH
bo x+0=x - prawo algebry Boole'a
Doskonale tu widać, że zdarzenie P*CH jest podzbiorem => zdarzenia (P*CH + ~P*CH)
cnd

2.2.3 Definicja warunku koniecznego ~> w zdarzeniach

Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Przykład:
B1.
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki.

W zapisie formalnym mamy tu:
p=CH (chmurka)
q=P (pada)
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")

Podsumowując:
Kod:

Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=CH
B1: q=P
B1: CH~>P=CH+~P

Można łatwo udowodnić, iż zdarzenie CH (chmury) jest nadzbiorem ~> zdarzenia P (pada)

Dowód:
Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>
p~>q
1.
Prawo algebry Boole'a:
p=p*1
q=q*1
Stąd mamy:
p*1~>q*1
2.
Korzystamy z definicji wspólnej dziedziny dla p i q:
p+~p=D =1
q+~q=D =1
stąd mamy:
p*(q+~q) ~> q*(p+~p)
3.
Wymnażamy wielomiany logiczne:
p*q + p*~q ~> p*q + ~p*q
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Nasz przykład:
p=CH(chmury)
q=P(pada)
Podstawiając do 3 mamy:
4.
CH*P + CH*~P ~> CH*P + ~CH*P
Badamy możliwość ~~> wystąpienie wszystkich zdarzeń:
CH*P=1 - możliwe jest (=1) zdarzenie: są chmury (CH) i pada (P)
CH*~P=1 - możliwe jest (=1) zdarzenie: są chmury (CH) i nie pada (~P)
~CH*P=0 - niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH) i pada (P)
Stąd mamy:
5.
CH*P + CH*~P ~> CH*P
bo x+0=x
Doskonale tu widać, że zdarzenie (CH*P + CH*~P) jest nadzbiorem ~> zdarzenia CH*P
cnd

2.2.4 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wymusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wymusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

Na mocy definicji kontrprzykładu prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywość kontrprzykładu A1' (i odwrotnie)
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH=0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu tego faktu nie musimy udowadniać, ale możemy, co wyżej uczyniliśmy.

Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’

2.3 Elementarne spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów/zdarzeń p i q.

2.3.1 Definicja elementu wspólnego zbiorów ~~>

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu co kończy dowód, nie wyznaczamy tu kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)

Kod:

Zero-jedynkowa definicja elementu wspólnego zbiorów ~~>:
   p  q p~~>q = p*q + p*~q + ~p*~q + ~p*q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =1
Interpretacja:
p~~>q=p*q=1 - wtedy i tylko wtedy
              gdy istnieje (=1) element wspólny ~~> zbiorów p i q
Inaczej:
p~~>q=p*q=0

Przykład:
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1
Istnieje (=1) wspólny element zbiorów P8=[8,16,24..] i P3=[3,6,9..24..] np. 24

2.3.2 Definicja warunku wystarczającego => w zbiorach

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona

Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q

Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Udowodnić relację podzbioru P8=>P2 potrafi każdy matematyk.

W zapisie formalnym mamy tu:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")

Podsumowując:
Kod:

Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q = ~p+q
Zapis aktualny (przykład):
A1: p=P8
A1: q=P2
A1: P8=>P2=~P8+P2


2.3.3 Definicja warunku koniecznego ~> w zbiorach

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - wtedy i tylko wtedy gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - wtedy i tylko wtedy gdy relacja nadzbioru ~> nie jest (=0) spełniona

Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
Zajście p nie jest (=0) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q

Matematycznie zachodzi tożsamość logiczna:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Przykład:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

W zapisie formalnym mamy tu:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")

Podsumowując:
Kod:

Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=P2
B1: q=P8
B1: P2~>P8=P2+~P8


2.3.4 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
P8=>P2=1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2, bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…], co każdy matematyk udowodni.

Na mocy definicji kontrprzykładu, z prawdziwości warunku wystarczającego A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli dowolna liczba jest podzielna przez 8 (P8) to może ~~> nie być podzielna przez 2 (~P2)
P8~~>~P2 = P8*~P2 =[] =0
Dowód wprost:
Nie istnieje (=0) wspólny element zbiorów P8=[8,16,24..] i ~P2=[1,3,5,7,9…] bo dowolny zbiór liczb parzystych jest rozłączny z dowolnym zbiorem liczb nieparzystych.
Dowód "nie wprost":
Na mocy definicji kontrprzykładu fałszywości zdania A1' nie musimy udowadniać, ale możemy, co zrobiono wyżej.

Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’

2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~>

Rachunek zero-jedynkowy dla teorii zdarzeń i teorii zbiorów jest wspólny.

Definicja stałej binarnej
Stała binarna to symbol mający w osi czasu stałą wartość logiczną 0 albo 1.

Definicja zmiennej binarnej:
Zmienna binarna to symbol, przyjmujący w osi czasu wyłącznie dwie wartości logiczne 0 albo 1.

Zachodzi tożsamość pojęć:
zmienna binarna = zmienna dwuwartościowa

Definicja zmiennej binarnej w logice dodatniej (bo p):
Zmienna binarna p wyrażona jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej mamy do czynienia ze zmienną binarną w logice ujemnej (bo ~p)

Definicja funkcji logicznej Y dwóch zmiennych binarnych p i q:
Funkcja logiczna Y w logice dodatniej (bo Y) dwóch zmiennych binarnych p i q to cyfrowy układ logiczny (bramka logiczna) dający na wyjściu binarnym Y jednoznaczne odpowiedzi na wszystkie możliwe wymuszenia na wejściach p i q.

Zero-jedynkowa tabela prawdy:
Zero-jedynkowa tabela prawdy to zapis wszystkich możliwych wartościowań zmiennych binarnych w postaci tabeli zero-jedynkowej.

W poniższych tabelach T1 do T4 w kolumnach opisujących symbole {p, q Y} nie mamy stałych wartości 1 albo 0 co oznacza, że symbole te są zmiennymi binarnymi.
Kod:

T1
Definicja warunku wystarczającego =>
        Y=
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Gdzie:
Podstawa wektora => zawsze wskazuje poprzednik, część zdania po "Jeśli.."
Strzałka wektora => zawsze wskazuje następnik, część zdania po "to.."
;
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
        Y=
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Gdzie:
Podstawa wektora ~> zawsze wskazuje poprzednik, część zdania po "Jeśli.."
Strzałka wektora ~> zawsze wskazuje następnik, część zdania po "to.."
;
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+):
        Y=
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
;
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych szybsza jest logika zer.

##
Kod:

T4
Definicja spójnika “i”(*)
        Y=
   p  q p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 0  0
D: 0* 1  0
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „i”(*) w logice jedynek:
p*q=1 <=> p=1 i q=1
inaczej:
p*q=0

Gdzie:
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## w logice dodatniej (bo Y):
Funkcje logiczne Y w logice dodatniej (bo Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach p i q:
p - w logice dodatniej (bo p)
oraz
q - w logice dodatniej (bo q)
mają różne kolumny wynikowe Y ( w logice dodatniej bo Y)

Wniosek:
Funkcje logiczne definiowane tabelami T1 do T4 spełniają definicję znaczka różne na mocy definicji ##

Wyprowadźmy w rachunku zero-jedynkowym matematyczne związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Ax:
Warunek wystarczający =>:
p=>q = ~p+q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q # ~(p=>q)=p*~q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =0    =0        =0    =0        =0       #    =1
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =1    =1        =1    =1        =1       #    =0
                1     2         3     4         5             6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

##
Kod:

Bx:
Warunek konieczny ~>:
p~>q = p+~q
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q # ~(p~>q)=~p*q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =1    =1        =1    =1        =1       #    =0
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =0    =0        =0    =0        =0       #    =1
                1     2         3     4         5             6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Gdzie:
## - różne na mocy definicji
"=", [=], <=> (wtedy i tylko wtedy) - tożsame znaczki tożsamości logicznej
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej "=" wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej "=" wymusza fałszywość drugiej strony

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony

Doskonale widać, że w tabelach Ax i Bx definicja znaczka # jest spełniona

Definicja znaczka różne na mocy definicji ##:
Funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach {p, q} mają różne kolumny wynikowe i żadna z tych funkcji nie jest negacją drugiej.

Jak widzimy, między tabelami Ax i Bx obowiązuje znaczek różne na mocy definicji ##

2.5 Prawa algebry Kubusia wynikłe z rachunku zero-jedynkowego

Na mocy rachunku zero-jedynkowego wyżej mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
Matematyczne związki warunku wystarczającego => i koniecznego ~> bez zamiany p i q
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

2.
Prawa Tygryska:
Matematyczne związki warunku wystarczającego => i koniecznego ~> z zamianą p i q
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
##
B3: q=>p = B2: ~p=>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
Gdzie:
## - różne na mocy definicji

4.
Prawa kontrapozycji dla warunku koniecznego ~>:
B1: p~>q = B4: ~q~>~p
##
A3: q~>p = A2: ~p~>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
Gdzie:
## - różne na mocy definicji

2.5.1 Definicje znaczków # i ##

Zapiszmy matematyczne związki warunku wystarczającego => i koniecznego ~>
z uwzględnieniem kolumny 6.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:     A5B5:        A6B6:
      Y=        Y=           Y=        Y=        Y=(p=>q)= # ~Y=~(p=>q)=
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5:~p+ q   #  6: p* ~q
      ##        ##           ##        ##        ##          ##
      Y=        Y=           Y=        Y=        Y=(p~>q)= # ~Y=~(p~>q)=
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q   #  6: ~p* q
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Zapiszmy powyższe definicje wyrażone funkcjami logicznymi Y i ~Y
Kod:

T0"
Funkcja logiczna Y warunku wystarczającego =>:
A5: Y=(p=>q)=~p+ q   # A6: ~Y=~(p=>q)= p*~q
    ##                     ##
Funkcja logiczna Y warunku koniecznego ~>:
B5: Y=(p~>q)= p+~q   # B6: ~Y=~(p~>q)=~p* q
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej

Doskonale widać, że w tabeli T0" obie definicje znaczków # i ## są perfekcyjnie spełnione

2.6 Fundamentalne definicje i prawa algebry Kubusia

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

2.6.1 Prawa Sowy

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

2.6.2 Definicja tożsamości logicznej

Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań

Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)

2.6.3 Definicja dowodu "nie wprost" w algebrze Kubusia

Definicja dowodu „nie wprost” w algebrze Kubusia:
Dowód „nie wprost” w algebrze Kubusia to dowód warunku koniecznego ~> lub wystarczającego => z wykorzystaniem praw logiki matematycznej (prawa Kubusia, prawa Tygryska, prawa kontrapozycji dla warunku wystarczającego =>, prawa kontrapozycji dla warunku koniecznego ~>) plus definicja kontrprzykładu.

2.6.4 Prawa Prosiaczka

I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo Y) jest tożsama z fałszem (=0) w logice ujemnej (bo ~Y)
(Y=1) = (~Y=0)
##
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo Y) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~Y)
(Y=0) = (~Y=1)
Gdzie:
## - różne na mocy definicji

Prawa Prosiaczka wiążą zmienną binarną w logice dodatniej (bo Y) ze zmienną binarną w logice ujemnej (bo ~Y).
Prawa Prosiaczka możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Dowód praw Prosiaczka na gruncie fizyki znajdziemy w punkcie 1.2.1

2.7 Prawo Kłapouchego - kluczowe prawo logiki matematycznej

Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowaną przyczynę p zaś po „to..” mamy zdefiniowany skutek q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).

Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt.5.4.1)
Prawo Kłapouchego obowiązuje dla standardu dodatniego w języku potocznym człowieka.

Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.

Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni.

2.7.1 Definicja podstawowego spójnika implikacyjnego
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowego spójnika implikacyjnego
Podstawowy spójnik implikacyjny to badanie prawdziwości/fałszywości zdań w kolumnie A1B1 dającej odpowiedź na pytanie:
A1B1: Kiedy zajdzie p?

Podstawowe, przykładowe spójniki implikacyjne to implikacja prosta p|=>q i implikacja odwrotna p|~>q

Definicja implikacji prostej p|=>q
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
##
Definicja implikacji odwrotnej p|~>q
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Gdzie:
## - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q

2.7.2 Prawo Kłapouchego i prawo Kameleona w implikacji prostej p|=>q

Dane jest zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
Polecenie:
Zbadaj w skład jakiego podstawowego spójnika implikacyjnego wchodzi to zdanie

Rozwiązanie:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
A1: P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

Na mocy prawa Kłapouchego mamy:
p=P (pada)
q=CH (chmury)

Aby rozstrzygnąć w skład jakiego spójnika implikacyjnego wchodzi badane zdanie musimy zbadać prawdziwość/fałszywość warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku

##

B1.
Jeśli jutro będzie padało (P) to na 100% ~> będzie pochmurno (CH)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy wyprowadzone prawo Kameleona.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Dowód:
Zdania A1 i B1 wyżej.
Różność matematyczną zdań A1 i B1 rozpoznajemy wyłącznie po znaczkach warunku wystarczającego => (A1) i koniecznego ~> (B1) wbudowanych w treść zdań

W zapisach formalnych (ogólnych) zachodzi:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Nasza tabela prawdy z uwzględnieniem prawa Kłapouchego wygląda tak:
Kod:

T1
Tabela prawdy implikacji prostej p|=>q w zapisie formalnym:
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
To samo w zapisie aktualnym (nasz przykład):
p=P (pada)
q=CH (chmury)
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH=0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1
Matematyczne relacje między warunkiem wystarczającym => i koniecznym ~>
dla spełnionego warunku wystarczającego P=>CH=1
   Warunek wystarczający p=>q      | Warunek konieczny p~>q
   Zapis formalny:                 | Zapis formalny:
1: Y = A1: p=>q =~p+q             ## Y = B1: p~>q = B3: q=>p = p+~q
   Zapis aktualny (przykład):      | Zapis aktualny (przykład)
2: p=P (pada)                    [=] p=P (pada)
3: q=CH (chmury)                 [=] q=CH (chmury)
4: A1: P=>CH=1                    ## B1: P~>CH=0
P jest wystarczające => dla CH    ## P nie jest (=0) konieczne ~> dla CH
Gdzie:
##  - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


2.7.3 Prawo Kłapouchego w implikacji odwrotnej p|~>q

Dane jest zdanie:
Jeśli jutro będzie pochmurno to może padać
Polecenie:
Zbadaj w skład jakiego podstawowego spójnika implikacyjnego wchodzi powyższe zdanie

Rozwiązanie:
B1.
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
B1: CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki (CH)

Na mocy prawa Kłapouchego mamy:
p=CH (chmury)
q=P (pada)

Aby rozstrzygnąć w skład jakiego spójnika implikacyjnego wchodzi zdanie B1 musimy zbadać prawdziwość/fałszywość warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.

##

A1.
Jeśli jutro będzie pochmurno (CH) to na 100% => będzie padało (P)
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.
Gdzie:
## - zdania B1 i A1 to zdania różne na mocy definicji warunku koniecznego ~> i wystarczającego =>

Dowód w zapisach formalnych:
B1: p~>q=p+~q ## A1: p=>q=~p+q
Gdzie:
## - różne na mocy definicji warunku koniecznego ~> i wystarczającego =>

Nasza tabela prawdy z uwzględnieniem prawa Kłapouchego wygląda tak:
Kod:

T2
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~>
między tymi samymi punktami i w tym samym kierunku
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
To samo w zapisie aktualnym (nasz przykład):
p=CH (chmury)
q=P (pada)
A1: CH=>P=0 - chmury nie są (=0) wystarczające => dla padania
B1: CH~>P=1 - chmury są (=1) konieczne ~> dla padania
A1B1: CH|~>P = ~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1*1=1
Matematyczne relacje między warunkiem wystarczającym => i koniecznym ~>
dla spełnionego warunku koniecznego CH~>P=1
   Warunek wystarczający p=>q         | Warunek konieczny p~>q
   Zapis formalny:                    | Zapis formalny:
1: Y = A1: p=>q =~p+q                ## Y = B1: p~>q = B3: q=>p = p+~q
   Zapis aktualny (przykład):         | Zapis aktualny (przykład)
2: p=CH (chmury)                    [=] p=CH (chmury)
3: q=P (pada)                       [=] q=P (pada)
4: CH=>P=0                           ## CH~>P=1
CH nie są wystarczające => dla P     ## CH są (=1) konieczne ~> dla P
Gdzie:
##  - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


2.7.4 Nietrywialny błąd podstawienia ###

Zapiszmy przykłady warunku wystarczającego => i koniecznego ~> w zdarzeniach
A1.
Przykład spełnionego warunku wystarczającego =>:
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
A1: P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

Na mocy prawa Kłapouchego mamy:
p=P (pada)
q=CH (chmury)

B1.
Przykład spełnionego warunku koniecznego ~>:
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
B1: CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki.

Na mocy prawa Kłapouchego mamy:
p=CH (chmury)
q=P (pada)

Umieśćmy nasze przykłady A1 i B1 w tabeli prawdy:
Kod:

Nietrywialny błąd podstawienia ###:
Definicja warunku wystarczającego =>: | Definicja warunku koniecznego ~>:
Zapis formalny:                       | Zapis formalny:
1. Y = A1: p=>q =~p+q                ## Y = B1: p~>q = B3: q=>p = p+~q
   Zapis aktualny (przykład):         | Zapis aktualny (przykład)
2. A1: p=P (pada)                   ### B1: p=CH (chmury)
3. A1: q=CH (chmury)                ### B1: q=P (pada)
4. A1: Y= A1: P=>CH =~P+CH          ### B1: Y= B1: CH~>P = B3: P=>CH =CH+~P
Gdzie:
##  - różne na mocy definicji
### - różne na mocy nietrywialnego błędu podstawienia
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Zauważmy że:
1.
Suma logiczna (+) jest przemienna stąd w linii 4 zachodzi pozorna tożsamość logiczna [=].
2.
W rzeczywistości pozorna tożsamość [=] w linii 4 nie zachodzi, bowiem mamy tu do czynienia z nietrywialnym błędem podstawienia ###
3.
W liniach 2 i 3 doskonale widać na czym ten nietrywialny błąd podstawienia ### polega:
Warunek wystarczający A1: p=>q jest tu obserwowany z punktu odniesienia p=P i q=CH
Natomiast:
Warunek konieczny B1: p~>q jest tu obserwowany z innego punktu odniesienia p=CH i q=P

Prawo Wielbłąda:
Otaczająca nas rzeczywistość wygląda różnie z różnych punktów odniesienia.
Innymi słowy:
Otaczającą nas rzeczywistość opiszemy matematycznie poprawnie wtedy i tylko wtedy gdy będziemy na nią patrzeć z tego samego punktu odniesienia.
Poprawny opis rzeczywistości w naszym przykładzie to punkty 2.7.2 i 2.7.3

Stąd mamy:
Definicja nietrywialnego błędu podstawienia ###:
Dwie funkcje logiczne Y są różne na mocy nietrywialnego błędu podstawienia ### wtedy i tylko wtedy gdy w zapisach formalnych (ogólnych) są różne na mocy definicji ## (linia 1), zaś w zapisach aktualnych (przykład) skolerowanych z zapisem formalnym funkcje te są tożsame (linia 4)

Wniosek:
Prawo Kłapouchego broni nas przed niejednoznacznością logiki matematycznej, bowiem tylko i wyłącznie dzięki niemu zauważymy nietrywialny błąd podstawienia ###
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt. 5.4.1)

2.8 Prawa Słonia

Prawa Słonia dla zdarzeń i zbiorów to najważniejsze prawa w logice matematycznej.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


2.8.1 Prawo Słonia dla zbiorów

Prawo Słonia dla zbiorów (pkt 2.3):
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.

Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów

Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"

Definicja podzbioru =>:
Zbiór p jest (=1) podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie jego elementy należą do zbioru q

Definicja nadzbioru ~>
Zbiór p jest (=1) nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q

W logice matematycznej zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór ~> = relacja nadzbioru ~>
W logice matematycznej rozstrzygamy o zachodzącej lub nie zachodzącej relacji podzbioru => czy też nadzbioru ~>.

Rozstrzygnięcia logiki matematycznej w relacji podzbioru =>:
p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q

##

Rozstrzygnięcia logiki matematycznej w relacji nadzbioru ~>:
p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0 - wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q

Gdzie:
## - różne na mocy definicji podzbioru => i nadzbioru ~>

Przykład:
Zbadaj czy zachodzi warunek wystarczający => w poniższym zdaniu:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to jest podzielna przez 2
A1: P8=>P2=?

Rozwiązanie:
Na mocy prawa Kłapouchego zapis formalny (ogólny) zdania A1 to:
A1: p=>q =1
Gdzie:
p=P8
q=P2

Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q matematyczne twierdzenie proste =>

W metodzie "nie wprost" na mocy prawa Słonia dowodzimy prawdziwości relacji podzbioru =>.
Innymi słowy badamy:
Czy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]?
Oczywiście relacja podzbioru => jest (=1) tu spełniona:
P8=>P2=1
co każdy matematyk bez trudu udowodni.

W tym momencie na mocy prawa Słonia mamy udowodnione metodą "nie wprost" dwa fakty czysto matematyczne:
1.
Twierdzenie proste A1 jest prawdziwe
A1: P8=>P2 =1
2.
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2
A1: P8=>P2 =1

Podsumowując:
Z gołych definicji podzbioru => i warunku wystarczającego => nic w matematyce nie wynika, dopóki nie poznamy prawa Słonia.
Dopiero prawo Słonia w dowodzeniu prawdziwości warunku wystarczającego =>, czy też prawdziwości samego zdania warunkowego „Jeśli p to q" ma fundamentalne znaczenie, co udowodniono ciut wyżej.

2.8.2 Prawo Słonia dla zdarzeń

Prawo Słonia dla zdarzeń (pkt 2.2):
W algebrze Kubusia w zdarzeniach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia

Relacja podzbioru => i nadzbioru ~> w zdarzeniach nie jest intuicyjna, ale można ją łatwo udowodnić co zostało pokazane w punktach 2.2.2 i 2.2.3.

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.

Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów

Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości
dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"

W zdarzeniach dowodzimy:
1.
Warunku wystarczającego p=>q co na mocy prawa Słonia jest tożsame z udowodnieniem, iż zdarzenie p jest podzbiorem => zdarzenia q
albo
2.
Warunku koniecznego p~>q co na mocy prawa Słonia jest tożsame z udowodnieniem, iż zdarzenie p jest nadzbiorem ~> zdarzenia q

2.9 Prawo Irbisa
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


2.9.1 Prawo Irbisa dla zbiorów

Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
Zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Innymi słowy:
Zajście p jest (=1) warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p

Ta wersja równoważności jest powszechnie znana.

I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
Y = A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
Y = B1: p~>q = B3: q=>p = p+~q

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy

Na mocy prawa Słonia oraz tabeli T0 możemy wygenerować dużą ilość tożsamych definicji równoważności p<=>q.

Przykładowe, najbardziej użyteczne definicje to:
1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):

Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

2.
Definicja równoważności wyrażona relacjami podzbioru =>

Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

Stąd mamy:

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa znane jest każdemu matematykowi.

Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)

Prawo Irbisa możemy też zapisać w relacjach podzbioru => i nadzbioru ~>.

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q (A1) i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q (B1)
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Dowód:
Oczywistość, bo na mocy definicji podzbioru => i nadzbioru ~> każdy zbiór jest jednocześnie podzbiorem => i nadzbiorem ~> siebie samego.

Korzystając z prawa Słonia prawo Irbisa możemy też zapisać w warunkach koniecznym ~> (B1) i wystarczającym => (A1).

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Stąd mamy tabelę prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa.
Kod:

TR
Definicja równoważności:
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku
Dla kolumny A1B1 mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

       A1B1:       A2B2:      |     A3B3:       A4B4:
A:  1: p=>q=1  = 2:~p~>~q=1  [=] 3: q~>p=1  = 4:~q=>~p=1  [=] 5: ~p+q =1
       ##           ##              ##           ##               ##
B:  1: p~>q=1  = 2:~p=>~q=1  [=] 3: q=>p=1  = 4:~q~>~p=1  [=] 5:  p+~q=1
-----------------------------------------------------------------------
Równoważność <=>:             |     Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów:  |     definiuje tożsamość zbiorów:
AB: 1: p=q     # 2:~p=~q      |  3: q=p     # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - znaczki tożsamości logicznej


2.9.2 Prawo Irbisa dla zdarzeń

Prawo Irbisa dla zdarzeń:
Dwa zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia zdarzenia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Przykład:
Pani w przedszkolu:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)

Na mocy prawa Irbisa zachodzi tożsamość pojęć:
Y=K <=> (A1: Y=>K)*(B1: Y~>K) = Y<=>K
Lewą stronę czytamy:
Pojęcie „pani dotrzyma słowa” (Y) jest tożsame „=” z pojęciem „pójdziemy do kina” (K)
Środek czytamy:
Do tego by dzieci poszły do kina (K) potrzeba ~> (B1) i wystarcza => (A1) by pani dotrzymała słowa (Y)
Prawą stronę czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:23, 07 Maj 2024    Temat postu:

Algebra Kubusia dla matematyków
2.10 Podstawowe spójniki implikacyjne

Spis treści
2.10 Podstawowe spójniki implikacyjne 1
2.10.1 Prawo Puchacza 4
2.11 Algorytm Puchacza 6
2.11.1 Przykłady zdań niespełniających algorytmu Puchacza 7
2.12 Implikacja prosta p|=>q 8
2.12.1 Operator implikacji prostej p||=>q 9
2.13 Implikacja odwrotna p|~>q 11
2.13.1 Operator implikacji odwrotnej p||~>q 12
2.14 Równoważność p<=>q 14
2.14.1 Operator równoważności p|<=>q 15
2.15 Chaos p|~~>q 17
2.15.1 Operator chaosu p||~~>q 18
2.16 Sztandarowy przykład implikacji prostej P|=>CH 20
2.16.1 Prawo Kameleona 21
2.16.2 Operator implikacji prostej P||=>CH 22
2.16.3 Twarde i miękkie zera i jedynki 24
2.17 Tabela prawdy operatora implikacji prostej p||=>q 25
2.17.1 Zero-jedynkowa definicja warunku wystarczającego p=>q 26
2.17.2 Zero-jedynkowa definicja warunku koniecznego ~p~>~q 27
2.17.3 Prawo porównywania w rachunku zero-jedynkowym 27


2.10 Podstawowe spójniki implikacyjne
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik definiowany kolumną A1B1 w matematycznych związkach warunku wystarczającego => i koniecznego ~> dający odpowiedź na pytanie o p:
Co się stanie jeśli zajdzie p?
A1: p=>q =? - czy zajście p jest wystarczające => dla zajścia q? TAK=1/NIE=0
B1: p~>q =? - czy zajście p jest konieczne ~> dla zajścia q? TAK=1/NIE=0
A1B1: p?q = (~)(A1: p=>q)*(~)(B1: p~>q)
Gdzie:
? - symbol spójnika implikacyjnego
(~) - symbol negacji który może wystąpić, ale nie musi, w zależności od wartości logicznej A1 i B1

Z definicji spójnika implikacyjnego wynika, że możliwe są cztery podstawowe spójniki implikacyjne:

1.
Implikacja prosta p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
;
Definicja warunku wystarczającego => w spójnikach "i"(*) i "lub"(+)
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach "i"(*) i "lub"(+)
p~>q = p+~q
Definicja implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)
Korzystając z definicji znaczków => i ~> mamy:
Y = (p|=>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) =~p*~p*q+q*~p*q = ~p*q+~p*q=~p*q
Kolejność wykonywania działań w algebrze Kubusia:
Negacja (~), nawiasy, "i"(*), "lub"(+)
Wykorzystane prawa algebry Kubusia:
1. ~(p+~q) = ~p*q - prawo De Morgana
2. mnożenie wielomianu
3. x*x=x - prawo algebry Boole'a

Do zapamiętania:
Definicja implikacji prostej p|=>q w spójnikach "i"(*) i "lub"(+):
Y = (p|=>q) = ~p*q

##
2.
Implikacja odwrotna p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q)=1*1=1
;
Definicja warunku wystarczającego => w spójnikach "i"(*) i "lub"(+)
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach "i"(*) i "lub"(+)
p~>q = p+~q
Definicja implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)
Korzystając z definicji znaczków => i ~> mamy:
Y = (p|~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) =(p*~q)*p + (p*~q)*~q = p*~q+p*~q = p*~q

Do zapamiętania:
Definicja implikacji odwrotnej p|~>q w spójnikach "i"(*) i "lub"(+):
Y = (p|~>q) = p*~q

##
3.
Równoważność p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
;
Definicja warunku wystarczającego => w spójnikach "i"(*) i "lub"(+)
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach "i"(*) i "lub"(+)
p~>q = p+~q
Stąd mamy:
Y = p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p~q + q*p + q*~q = p*q+~p*~q

Do zapamiętania:
Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+):
Y = p<=>q = p*q + ~p*~q

##
4.
Chaos p|~~>q:

Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego =>, ani też koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
;
Definicja chaosu w spójnikach "lub"(+) i "i"(*):
Chaos p|~~>q to zdanie zawsze prawdziwe przez wszystkie możliwe przeczenia p i q
Y = p*q+~p*q + p*~q + ~p*~q = q*(p+~p)+~q*(p+~p) = q+~q =1

Do zapamiętania:
Definicja chaosu p|~~>q w spójnikach "lub"(+) i "i"(*):
Y = p*q+~p*q + p*~q + ~p*~q =1

Gdzie:
## - różne na mocy definicji

2.10.1 Prawo Puchacza

Prawo Puchacza:
Dowolne zdanie warunkowe „Jeśli p to q” może wchodzić w skład jednego i tylko jednego spójnika implikacyjnego.

Dowód prawa Puchacza będzie polegał na założeniu, iż zdanie warunkowe „Jeśli p to q” jest częścią spójnika implikacyjnego x i pokazaniu iż pozostałe spójniki będą dla tego przypadku fałszem.

Dowód prawa Puchacza:

I.
Założenie p|=>q

Załóżmy że zdanie warunkowe „Jeśli p to q” jest częścią implikacji prostej p|=>q
Wtedy mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1

Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(1)*0=0*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*0=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(1)*~(0)=0*1=0
c.n.d.

II.
Założenie p|~>q

Załóżmy że zdanie warunkowe „Jeśli p to q” jest częścią implikacji odwrotnej p|~>q
Wtedy mamy:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1

Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=0*~(1)=0*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 0*1=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(1)=1*0=0
c.n.d.

III.
Założenie p<=>q

Załóżmy że zdanie warunkowe „Jeśli p to q” jest częścią równoważności p<=>q
Wtedy mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = (A1: p=>q)*(B1: p~>q)=1*1=1

Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(1)=1*0=0
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(1)*1=0*1=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(1)*~(1)=0*0=0
c.n.d.

IV
Założenie p|~~>q

Załóżmy że zdanie warunkowe „Jeśli p to q” jest częścią chaosu p|~~>q
Wtedy mamy:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1

Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=0*~(0)=0*1=0
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*0=1*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 0*0=0
ok
c.n.d.

Rozpatrzyliśmy wszystkie możliwe przypadki I, II, III i IV pozytywnie, co kończy dowód prawa Puchacza.

2.11 Algorytm Puchacza
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p
      ##        ##           ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Na mocy praw Sowy prawdziwość podstawowego spójnika implikacyjnego p?q definiowanego kolumną A1B1 (pytanie o p) wymusza prawdziwość odpowiedniego operatora implikacyjnego p|?q definiowanego dwoma kolumnami A1B1 (pytanie o p) i A2B2 (pytanie o ~p).

Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowaną przyczynę p zaś po „to..” mamy zdefiniowany skutek q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).

Algorytm Puchacza to przyporządkowania dowolnego zdania warunkowego "Jeśli p to q" (także fałszywego = fałszywy kontrprzykład) do określonego operatora implikacyjnego.

Algorytm Puchacza:
1.
W zdaniu warunkowym "Jeśli p to q" przeznaczonym do analizy lokalizujemy p i q z pominięciem przeczeń, zgodnie z prawem Kłapouchego bez analizy czy zdanie w oryginale jest prawdziwe/fałszywe.
Prawo Kłapouchego lokalizuje nas w kolumnie A1B1, gdzie mamy brak zaprzeczonego poprzednika p.
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt. 5.4.1)
2.
Poprzednik p i następnik q muszą spełniać definicję wspólnej dziedziny D zarówno dla p jak i dla q
Definicja dziedziny D dla p:
p+~p =D =1
p*~p=[] =0
Definicja tej samej dziedziny D dla q:
q+~q =D =1
q*~q =[] =0
3.
Zbiory/zdarzenia p, q, ~p, ~q muszą być niepuste, bowiem z definicji nie możemy operować na zbiorach/zdarzeniach pustych (pkt 12.2)
4.
Zdania warunkowe "Jeśli p to q" które nie spełniają punktów 1,2,3 są matematycznie fałszywe.

5.
Prawo Puchacza:
Dowolne zdanie warunkowe "Jeśli p to q" należy do jednego z 5 rozłącznych operatorów implikacyjnych p|?q wtedy i tylko wtedy gdy spełnione są warunki 1, 2 i 3 algorytmu Puchacza.
Rozłączne operatory implikacyjne to:
a) p||=>q - operator implikacji prostej (2.12.1)
b) p||~>q - operator implikacji odwrotnej (2.13.1)
c) p|<=>q - operator równoważności (2.14.1)
d) p||~~>q - operator chaosu (2.15.1)
e) p|$q - operator "albo"(|$) (7.2.1)
6.
Korzystając z praw algebry Kubusia wyznaczamy prawdziwość/fałszywość warunku wystarczającego A1: p=>q dla niezanegowanego p:
A1: p=>q =?
7.
Dla tych samych parametrów p i q wyznaczamy prawdziwość/fałszywość warunku koniecznego B1: p~>q dla niezanegowanego p:
B1: p~>q =?
W punktach 6 i 7 p i q muszą być wszędzie tymi samymi p i q inaczej błąd postawienia

Rozstrzygnięcia 6 i 7 możemy badać w odwrotnej kolejności, matematycznie to bez znaczenia.
Rozwiązanie kluczowych punktów 6 i 7 jednoznacznie definiuje nam spójnik implikacyjny p?q definiowany kolumną A1B1, a tym samym (na mocy praw Sowy) operator implikacyjny p|?q do którego należy badane zdanie.

2.11.1 Przykłady zdań niespełniających algorytmu Puchacza

Zdania warunkowe "Jeśli p to q" które nie spełniają punktów 1,2,3 algorytmu Puchacza są matematycznie fałszywe.

Ad. 1
W punkcie 1 chodzi o to, że jeśli przystępujemy do analizy matematycznej zdania "Jeśli p to q" to musimy zastosować prawo Kłapouchego, inaczej dostaniemy nietrywialny błąd podstawienia ### (pkt. 2.7.4)

Ad. 2
A1.
Jeśli liczba jest podzielna przez 2 to trójkąt może być prostokątny
P2~~>TP =0
Brak wspólnej dziedziny.
Stąd mamy:
Zdanie A1 jest fałszywe na mocy punktu 2 algorytmu Puchacza.

Ad. 3
Definicja zbioru pustego [] (pkt.12.2):
Zbiór pusty [] to zbiór zawierający zero pojęć zrozumiałych dla człowieka.

B1
Jeśli 2+2=5 to 2+2=4
Zdanie tożsame (wyjaśnienie w pkt.12.2.1):
B1
Jeśli zbiór pusty [] to liczba 4
[]~~>[4] = []*[4] =[] =0 - twardy fałsz, bo zbiór pusty [] i jednoelementowy zbiór [4] są rozłączne
Stąd mamy:
Zdanie B1 jest fałszywe na mocy punktu 3 algorytmu Puchacza.

Wyjątek:
C1.
Jeśli zbiór pusty [] to zbiór pusty []
[]=>[] =1
Bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty []
Wyjaśnienie w punkcie 12.2.1

2.12 Implikacja prosta p|=>q

Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)

Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
Kod:

IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
       A1B1:         A2B2:      |     A3B3:           A4B4:
A:  1: p=>q  =1  = 2:~p~>~q =1 [=] 3: q~>p  =1  =  4:~q=>~p =1
A': 1: p~~>~q=0                [=]                 4:~q~~>p =0
       ##             ##              ##              ##
B:  1: p~>q  =0  = 2:~p=>~q =0 [=] 3: q=>p  =0  =  4:~q~>~p =0
B':                2:~p~~>q =1 [=] 3: q~~>~p=1   
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań

2.12.1 Operator implikacji prostej p||=>q

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Matematycznie zachodzi tożsamość logiczna [=]:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) [=] A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q)

Dowód na mocy praw Sowy jest oczywisty.

Dowód alternatywny:
Definicja implikacji prostej p|=>q w spójnikach "i"(*) i "lub"(+):
A1B1: p|=>q = ~p*q (pkt. 2.10)
Definicja implikacji odwrotnej p|~>q w spójnikach "i"(*) i "lub"(+):
A2B2: p|~>q = p*~q (pkt. 2.10)
Mamy do udowodnienia tożsamość logiczną [=]:
A1B1: p|=>q [=] A2B2: ~p|~>~q
Rozwijamy prawą stronę definicją |~>:
A2B2: ~p|~>~q = (~p)*~(~q) = ~p*q = A1B1: p|=>q
cnd

A1B1:
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q (A1), ale nie jest (=0) warunkiem koniecznym ~> dla zajścia q (B1)

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = gwarancja matematyczna =>
Innymi słowy:
Zawsze gdy zajdzie p, zajdzie q

Prawdziwy warunek wystarczający A1: p=>q=1 wymusza fałszywy kontrprzykład A1' (i odwrotnie)
A1'.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=p*~q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: p i ~q
To jest dowód "nie wprost" fałszywości zdania A1' na mocy definicji kontrprzykładu.

… a jeśli zajdzie ~p?
Prawo Kubusia:
A1: p=>q = A2: ~p~>~q
Idziemy do kolumny A2B2.

A2B2:
Co może się wydarzyć jeśli zajdzie ~p?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście ~p jest (=1) warunkiem koniecznym ~> dla zajścia ~q (A2), ale nie jest (=0) warunkiem wystarczającym => dla zajścia ~q (B2).

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
A2.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q =1
Zajście ~p jest (=1) warunkiem koniecznym ~> dla zajścia ~q
Innymi słowy:
Zajście ~p jest konieczne ~> dla zajścia ~q wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~p~>~q = A1: p=>q

lub

Fałszywy warunek wystarczający B2: ~p=>~q=0 wymusza prawdziwy kontrprzykład B2' (i odwrotnie)
B2'.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q =~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Istnieje (=1) wspólny element zbiorów ~~>: ~p i q
Na mocy definicji kontrprzykładu fałszywość warunku wystarczającego B2: ~p=>~q =0 wymusza prawdziwość kontrprzykładu B2': ~p~~>q=1 (i odwrotnie).
To jest dowód "nie wprost" prawdziwości zdania B2'

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej p||=>q jest gwarancja matematyczna => po stronie p (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~p (zdania A2 i B2’) .

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej A2B2: ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej A1B1: p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Przykład implikacji prostej P|=>CH i operatora implikacji prostej P||=>CH znajdziemy w punkcie 3.4 i 3.4.1.

2.13 Implikacja odwrotna p|~>q

Definicja implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) konieczne ~> dla zajścia q (B1), ale nie jest (=0) wystarczające => dla zajścia q (A1).

Podstawmy definicję implikacji odwrotnej p|~>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
Kod:

IO:
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
       A1B1:         A2B2:      |     A3B3:           A4B4:
A:  1: p=>q  =0  = 2:~p~>~q =0 [=] 3: q~>p  =0  =  4:~q=>~p =0
A': 1: p~~>~q=1                [=]                 4:~q~~>p =1
       ##             ##              ##              ##
B:  1: p~>q  =1  = 2:~p=>~q =1 [=] 3: q=>p  =1  =  4:~q~>~p =1
B':                2:~p~~>q =0 [=] 3: q~~>~p=0   
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawa Sowy:
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Ax wymusza fałszywość pozostałych zdań

2.13.1 Operator implikacji odwrotnej p||~>q

Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2)
Kolumna A1B1:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p|=>~q = ~(A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Matematycznie zachodzi tożsamość logiczna [=]:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) [=] A2B2: ~p|=>~q = ~(A2:~p~>~q)*(B2: ~p=>~q)

Dowód na mocy praw Sowy jest oczywisty.

Dowód alternatywny:
Definicja implikacji odwrotnej p|~>q w spójnikach "i"(*) i "lub"(+):
A1B1: p|~>q = p*~q (pkt. 2.10)
Definicja implikacji prostej p|=>q w spójnikach "i"(*) i "lub"(+):
A2B2: p|=>q = ~p*q (pkt. 2.10)
Mamy do udowodnienia tożsamość logiczną [=]:
A1B1: p|~>q [=] A2B2: ~p|=>~q
Rozwijamy prawą stronę definicją |=>:
A2B2: ~p|=>~q = ~(~p)*(~q) = p*~q = A1B1: p|~>q
cnd

A1B1:
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> dla zajścia q (B1), ale nie jest (=0) warunkiem wystarczającym => dla zajścia q (A1)

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
B1.
Jeśli zajdzie p to może ~> zajść zajdzie q
p~>q =1
Zajście p jest konieczne ~> dla zajścia q
Innymi słowy:
Zajście p jest konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zajście ~p jest wystarczające => dla zajścia ~q
Prawo Kubusia samo nam tu wyskoczyło:
B1: p~>q = B2: ~p=>~q

lub

Fałszywy warunek wystarczający A1: p=>q=0 wymusza prawdziwy kontrprzykład A1' (i odwrotnie)
A1'
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Istnieje (=1) wspólny element zbiorów ~~>: p i ~q
Innymi słowy:
Fałszywość warunku wystarczającego A1: p=>q =0 wymusza prawdziwość kontrprzykładu A1' (i odwrotnie). To jest dowód "nie wprost" prawdziwości zdania A1'

.. a jeśli zajdzie ~p?
Prawo Kubusia:
B1: p~>q = B2: ~p=>~q
Idziemy do kolumny A2B2.

A2B2:
Co może się wydarzyć jeśli zajdzie ~p?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p|=>~q = ~(A2:~p~>~q)*(B2: ~p=>~q) = ~(0)*1=1*1=1
Prawą stronę czytamy:
Zajście ~p jest (=1) warunkiem wystarczającym => dla zajścia ~q (B2), ale nie jest (=0) warunkiem koniecznym ~> dla zajścia ~q (A2).

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
B2
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest (=1) warunkiem wystarczającym => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = gwarancja matematyczna =>
Innymi słowy:
Zawsze gdy zajdzie ~p, zajdzie ~q

Prawdziwy warunek wystarczający B2:~p=>~q=1 wymusza fałszywy kontrprzykład B2' (i odwrotnie)
B2'
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: ~p i q
To jest dowód "nie wprost" fałszywości zdania B2' na mocy definicji kontrprzykładu.

Podsumowanie:
Jak widzimy, istotą operatora implikacji odwrotnej p||~>q jest „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie p (zdania B1 i A1’), oraz gwarancja matematyczna => po stronie ~p (zdanie B2)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2: ~p|=>~q = ~(A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej A2B2: ~p||=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji odwrotnej A1B1: p||~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Przykład implikacji odwrotnej CH|~>P i operatora implikacji odwrotnej CH||~>P znajdziemy w punkcie 4.4 i 4.4.1

2.14 Równoważność p<=>q

Definicja równoważności p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1=1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Do tego aby zaszło q potrzeba ~> (B1) i wystarcza => aby zaszło p

Prawa strona to definicja równoważności p<=>q powszechnie znana (nie tylko matematykom).
Dowód:
Klikamy na googlach:
"koniecznym i wystarczającym"
Wyników: 11 100
"potrzeba i wystarcza"
Wyników: 3 100

Prawo Irbisa:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zdarzeń/zbiorów p=q (i odwrotnie)
Dowód (pkt. 2.9)

Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa oraz definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>
Kod:

TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
       A1B1:         A2B2:      |     A3B3:           A4B4:
A:  1: p=>q  =1  = 2:~p~>~q =1 [=] 3: q~>p  =1  =  4:~q=>~p =1
A': 1: p~~>~q=0                [=]                 4:~q~~>p =0
       ##             ##              ##              ##
B:  1: p~>q  =1  = 2:~p=>~q =1 [=] 3: q=>p  =1  =  4:~q~>~p =1
B':                2:~p~~>q =0 [=] 3: q~~>~p=0   
-----------------------------------------------------------------------
Równoważność <=> definiuje:     |     Równoważność <=> definiuje:
AB: 1: p<=>q=1 = 2:~p<=>~q=1   [=] 3: q<=>p=1   =  4:~q<=>~p=1
tożsamość zdarzeń/zbiorów:      |     tożsamość zdarzeń/zbiorów:
AB: 1: p=q     # 2:~p=~q        |  3: q=p       #  4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej

Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość pozostałych zdań

2.14.1 Operator równoważności p|<=>q

Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Matematycznie zachodzi tożsamość logiczna [=]:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) [=] A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q)

Dowód na mocy praw Sowy jest oczywisty

Dowód alternatywny:
Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+):
A1B1: p<=>q = p*q+~p*~q (pkt. 2.10)
Mamy do udowodnienia tożsamość logiczną [=]:
A1B1: p<=>q [=] A2B2: ~p<=>~q
Rozwijamy prawą stronę definicją <=>:
A2B2: ~p<=>~q = (~p)*(~q) + ~(~p)*~(~q)= ~p*~q + p*q = p*q+~p*~q = A1B1: p<=>q
cnd

A1B1:
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = gwarancja matematyczna => = na 100% => etc
Innymi słowy:
Zawsze gdy zajdzie p, zajdzie q

Prawdziwy warunek wystarczający A1: p=>q=1 wymusza fałszywy kontrprzykład A1' (i odwrotnie)
A1'.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=p*~q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: p i ~q
To jest dowód "nie wprost" fałszywości zdania A1' na mocy definicji kontrprzykładu.

… a jeśli zajdzie ~p?
Idziemy do kolumny A2B2.

A2B2:
Co może się wydarzyć jeśli zajdzie ~p?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) =1*1=1
Czytamy:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście ~p jest (=1) konieczne ~> (A2) i wystarczające => (B2) dla zajścia ~q

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q

Prawdziwy warunek wystarczający B2: ~p=>~q=1 wymusza fałszywy kontrprzykład B2' (i odwrotnie)
B2'.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=~p*q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: ~p i q
To jest dowód "nie wprost" fałszywości zdania B2' na mocy definicji kontrprzykładu.

Podsumowanie:
Jak widzimy, istotą operatora równoważności p|<=>q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna po stronie ~p (zdanie B2)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co się stanie jak zajdzie ~p?
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co się stanie jak zajdzie p?
Doskonale widać, że analiza matematyczna operatora równoważności A2B2: ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora równoważności A1B1: p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Przykład równoważności A<=>S i operatora równoważności A|<=>S znajdziemy w punkcie 6.6 i 6.6.1

2.15 Chaos p|~~>q

Definicja chaosu p|~~>q:
Chaos p|~~>q to brak spełnienia zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samym punktami i w tym samym kierunku
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p nie jest (=0) konieczne ~> dla zajścia q (B1), jak również nie jest (=0) wystarczające => dla zajścia q (A1).

Podstawiając do matematycznych związków warunku wystarczającego => i koniecznego ~> mamy:
Kod:

CH
Tabela prawdy chaosu p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Komentarz:
Kolumna A1B1:
Fałszywy warunek wystarczający:
A1: p=>q=0
wymusza prawdziwość kontrprzykładu:
A1’: p~~>~q=1
Dodatkowo musi być:
A1’’: p~~>q =p*q =1
Dowód „nie wprost”.
Załóżmy, że zachodzi:
A1’’: p~~>q=p*q=0 - niemożliwe jest jednoczesne zajście zdarzeń p i q
Wtedy, na mocy definicji kontrprzykładu prawdziwy jest warunek wystarczający =>:
A1’’’: p=>~q=1
co jest sprzeczne z definicją chaosu p|~~>q gdzie o żadnym warunku wystarczającym => mowy być nie może.
cnd

Identycznie mamy w kolumnie A2B2:
Fałszywy warunek wystarczający:
B2: ~p=>~q=0
wymusza prawdziwość kontrprzykładu:
B2’: ~p~~>q = ~p*q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q
Dodatkowo musi być:
B2’’: ~p~~>~q =~p*~q=1
Dowód „nie wprost”
Załóżmy, że zachodzi:
B2’’: ~p~~>~q=~p*~q=0 - niemożliwe jest jednoczesne zajście zdarzeń ~p i ~q
Wtedy, na mocy definicji kontrprzykładu prawdziwy jest warunek wystarczający =>:
B2’’’: ~p=>q=1
co jest sprzeczne z definicją chaosu p|~~>q gdzie o żadnym warunku wystarczającym => mowy być nie może.
cnd

2.15.1 Operator chaosu p||~~>q

Definicja operatora chaosu p||~~>q
Operator chaosu p||~~>q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

A1B1:
Co się stanie jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1”: p~~>q = p*q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q = p*~q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i ~q
Innymi słowy:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A1” i A1’

Kolumna A1B1:
Analiza w zdaniach warunkowych „Jeśli p to q” dla spełnionego p (p=1):
A1’’.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~> p i q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i q

LUB

A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~> p i ~q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i ~q

A2B2:
Co się stanie jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
B2”: ~p~~>~q = ~p*~q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’: ~p~~>q = ~p*q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q
Innymi słowy:
Jeśli zajdzie ~p (~p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B2” i B2’

Kolumna A2B2:
Analiza w zdaniach warunkowych „Jeśli p to q” dla niespełnionego p (~p=1):
B2’’.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q = ~p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~> ~p i ~q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów ~p i ~q

LUB

B2’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~> ~p i q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów ~p i q

Podsumowanie:
Doskonale widać, że zarówno po stronie p jak i po stronie ~p mamy tu najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.
Po stronie p mamy:
Jeśli zajdzie p to może ~~> zajść q (zdanie A1”) lub może ~~> zajść ~q (zdanie A1’)
Po stronie ~p mamy:
Jeśli zajdzie ~p to może ~~> zajść ~q (zdanie B2”) lub może ~~> zajść q (zdanie B2’)

Zauważmy, że kolejność wypowiadania zdań A1", A1', B2", B2' jest bez znaczenia, wszystkie muszą być prawdziwe.

Uwaga:
Przykład chaosu A|~~>S i operatora chaosu A||~~>S znajdziemy w punkcie 7.2 i 7.2.1

2.16 Sztandarowy przykład implikacji prostej P|=>CH

Kod:

T0
      A1B1:     A2B2:
A: 1: p=>q = 2:~p~>~q
      ##        ##
B: 1: p~>q = 2:~p=>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Typowe zadanie w algebrze Kubusia brzmi:

Zadanie 1
Zbadaj w skład jakiego operatora implikacyjnego wchodzi zdanie wypowiedziane:
W.
Jeśli jutro będzie padało to będzie pochmurno

Rozwiązanie:
Na mocy prawa Kłapouchego wspólny dla wszystkich ludzi punkt odniesienia to:
p=P (pada)
q=CH (chmury)
Prawo Kłapouchego lokalizuje nas w kolumnie A1B1, gdzie mamy brak zaprzeczonego poprzednika p.

Badamy prawdziwość/fałszywość warunku wystarczającego => A1.
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
To samo w zapisie formalnym:
p=>q =1
Padanie (P) jest warunkiem wystarczającym => dla istnienia chmur (CH), bo zawsze gdy pada, są chmury
Innymi słowy:
Jeśli jutro będzie padało to mamy gwarancję matematyczną => istnienia chmur

Zachodzi tożsamość pojęć:
Na 100% => = warunek wystarczający => = gwarancja matematyczna => …
etc

Pozostało nam wybrać dowolne zdanie z linii Bx i udowodnić jego prawdziwość/fałszywość.
Wybieramy zdanie B1 kodowane warunkiem koniecznym ~>.

B1.
Jeśli jutro będzie padało (P) to na 100% ~> będzie pochmurno (CH)
P~>CH=0
To samo w zapisie formalnym:
p~>q =0
Dowód wprost:
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.

2.16.1 Prawo Kameleona

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Przykład to zdania A1 i B1 z poprzedniego punktu.
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
to samo w zapisie formalnym:
p=>q =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury

##

B1.
Jeśli jutro będzie padało (P) to na 100% ~> będzie pochmurno (CH)
P~>CH =0
to samo w zapisie formalnym:
p~>q =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Dowód iż to są zdania różne na mocy definicji:
A1: p=>q = ~p+q ## B1: p~>q =p+~q
Gdzie:
## - różne na mocy definicji

Różność matematyczną ## zdań A1 i B1 rozpoznajmy wyłącznie po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

2.16.2 Operator implikacji prostej P||=>CH

Zdania A1 i B1 są dowodem, iż mamy tu do czynienia z implikacją prostą A1B1: P|=>CH:

Definicja implikacji prostej P|=>CH
Implikacja prosta A1B1: P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>CH =1 - padanie (P) jest (=1) wystarczające => dla istnienia chmur (CH)
B1: P~>CH =0 - padanie (P) nie jest (=0) konieczne ~> dla istnienia chmur (CH)
Stąd mamy:
A1B1: P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1=1

W tym momencie mamy kompletną tabelę implikacji prostej A1B1: P|=>CH.
Kod:

IP.
Implikacja prosta p|=>q w zapisie formalnym:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*(0)=1*1=1
Nasz punkt odniesienia na mocy prawa Kłapouchego:
p=P (pada)
q=CH (chmury)
Implikacja prosta P|=>CH w zapisie aktualnym (nasz przykład):
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH=0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: (P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
       A1B1:         A2B2:       |     A3B3:        A4B4:
Zapis formalny:
A:  1: p=>q   =1  = 2:~p~>~q =1 [=] 3: q~>p   =1 =  4:~q=>~p =1
A': 1: p~~>~q =0                [=]                 4:~q~~>p =0
Zapis aktualny (nasz przykład)
p=P, q=CH
A:  1: P=>CH  =1  = 2:~P~>~CH=1 [=] 3: CH~>P  =1 =  4:~CH=>~P=1
A': 1: P~~>~CH=0                [=]                 4:~CH~~>P=0
       ##              ##               ##            ##
Zapis formalny:
B:  1: p~>q  =0   = 2:~p=>~q =0 [=] 3: q=>p   =0 =  4:~q~>~p =0
B':                 2:~p~~>q =1 [=] 3: q~~>~p =1
Zapis aktualny (nasz przykład)
p=P, q=CH
B:  1: P~>CH =0   = 2:~P=>~CH=0 [=] 3: CH=>P  =0 =  4:~CH~>~P=0
B':                 2:~P~~>CH=1 [=] 3: CH~~>~P=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawo Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań w linii A
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań w linii B

Innymi słowy:
Po udowodnieniu iż zdanie warunkowe „Jeśli p to q” jest częścią implikacji prostej A1B1: p|=>q w logice dodatniej (bo q) nic więcej nie musimy udowadniać, bowiem na mocy praw Sowy mamy zdeterminowaną prawdziwość/fałszywość wszelkich zdań warunkowych „Jeśli p to q” widniejących w tabeli IP

Definicja operatora implikacji prostej P||=>CH:
Operator implikacji prostej P||=>CH to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o padanie (P) i nie padanie (~P)
Kolumna A1B1:
A1B1: P|=>CH = (A1: (P=>CH)*~(B1: P~>CH) - co może się wydarzyć jeśli jutro będzie padało (P)?
Kolumna A2B2
A2B2: ~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) - co może być jeśli jutro nie będzie padało (~P)?

A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P)?

Odpowiedź mamy w kolumnie A1B1:
A1: P=>CH=1 - padanie (P) jest (=1) wystarczające > dla istnienia chmur (CH)
B1: P~>CH =0 - padanie (P) nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur (A1: P=>CH=1) , ale nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur (B1: P~>CH=0)

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
To samo w zapisie formalnym:
p=>q =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywy kontrprzykład A1' (i odwrotnie)
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywość kontrprzykładu A1': P~~>~CH=0 ( i odwrotnie).

… a jeśli jutro nie będzie padało (~P)?
Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH
Idziemy do kolumny A2B2.

A2B2:
Co może się wydarzyć jeśli jutro nie będzie padało (~P)?

Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~P~>~CH =1 - brak opadów (~P) jest (=1) warunkiem koniecznym ~> dla braku chmur (~CH)
B2: ~P=>~CH =0 - brak opadów (~P) nie jest (=0) warunkiem wystarczającym => braku chmur (~CH)
A2B2: ~P|~>~CH = (A2:~P~>~CH)*~(B2: ~P=>~CH) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Brak opadów jest (=1) warunkiem koniecznym ~> by nie było pochmurno (A1: ~P~>~CH=1), ale nie jest (=0) warunkiem wystarczającym => by nie było pochmurno (B2: ~P=>~CH)=0)

Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
A2
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
~P~>~CH =1
To samo w zapisie formalnym:
~p~>~q =1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno (~CH) bo jak pada (P) to na 100% => jest pochmurno (CH)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH =1
To samo w zapisie formalnym:
A2: ~p~>~q = A1: p=>q

lub

B2'.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH =~P*CH=1
To samo w zapisie formalnym:
~p~~>q = ~p*q =1
Dowód wprost:
Możliwe jest (=1) zdarzenie ~~>: nie pada (~P) i jest pochmurno (CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu fałszywość warunku wystarczającego B2: ~P=>~CH=0 wymusza prawdziwość kontrprzykładu B2': ~P~~>CH=1 (i odwrotnie)

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej P||=>CH jest gwarancja matematyczna => po stronie P (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~P (zdania A2 i B2’) .

2.16.3 Twarde i miękkie zera i jedynki

Definicja twardej jedynki:
Twarda jedynka w logice matematycznej to po prostu warunek wystarczający =>.

Nasz przykład:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury.

Na mocy definicji kontrprzykładu twarda jedynka w zdaniu A1 wymusza twarde zero w zdaniu A1' (i odwrotnie).
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH =0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)

Definicja miękkiej jedynki:
Miękka jedynka to zdarzenie które może zajść, ale nie musi.

Nasz przykład:
Jeśli jutro nie będzie padało to może ~> nie być pochmurno (zdanie A2), lub może ~~> być pochmurno (zdanie B2'.
Miękka jedynka wymusza miękkie zero i odwrotnie w zależności od tego które zdarzenie zajdzie.

Przykładowo:
Jeśli jutro nie będzie padało to może być prawdziwe zdanie A2 (miękka jedynka) i fałszywe zdanie B2' (miękkie zero)
albo
Jeśli jutro nie będzie padało to może być prawdziwe zdanie B2' (miękka jedynka) i fałszywe zdanie A2 (miękkie zero)

2.17 Tabela prawdy operatora implikacji prostej p||=>q

Zapiszmy w tabeli prawdy powyższą analizę operatora implikacji prostej P||=>CH przechodząc na zapisy formalne (ogólne) poprzez podstawienie.
p=P (pada)
q=CH (chmury)
Tabela prawdy operatora implikacji prostej p||=>q.
Kod:

T1
Tabela prawdy operatora implikacji prostej p||=>q
A1:  p=> q =1 - zajście p jest wystarczające => dla zajścia q
                Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
                Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2: ~p~>~q =1 - bo prawo Kubusia: A1: p=>q = A2: ~p~>~q
                Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
                Miękka jedynka w B2' na mocy definicji p||=>q

Prawo Krokodyla (pkt. 21.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.

Jak widzimy, w operatorze implikacji prostej p||=>q mamy jedną twardą jedynkę (A1), jedno twarde zero (A1') oraz dwie miękkie jedynki (A2 i B2') wymuszone definicją tego operatora, co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.

2.17.1 Zero-jedynkowa definicja warunku wystarczającego p=>q

Zapiszmy tabelę prawdy operatora implikacji prostej p||=>q w wersji skróconej:
Kod:

T2
Definicja     |Co w logice
symboliczna   |jedynek oznacza
p||=>q        |
A1:  p=> q =1 |( p=1)=> ( q=1)=1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1
B2':~p~~>q =1 |(~p=1)~~>( q=1)=1
     a   b  c    1        2    3

Zero-jedynkową definicję warunku wystarczającego p=>q w logice dodatniej (bo q) otrzymamy kodując tabelę T2 z punktem odniesienia ustawionym na warunku wystarczającym =>:
A1: p=>q
W warunku wystarczającym A1: p=>q zmienne p i q są w postaci niezanegowanej.

Tabelę zero-jedynkową warunku wystarczającego A1: p=>q w logice dodatniej (bo q) otrzymamy wtedy i tylko wtedy gdy wszystkie zmienne w tabeli T2_12 sprowadzimy do postaci niezanegowanej.
Umożliwia to II prawo Prosiaczka (pkt. 1.2):
(~p=1)=(p=0)
które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Zróbmy to:
Kod:

T3
Definicja     |Co w logice       |Na mocy II        |Zapis tożsamy
symboliczna   |jedynek oznacza   |prawa Prosiaczka  |tabeli 456
p||=>q        |                  |                  |  p  q  p=> q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 |  1=>1   =1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 |  1=>0   =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 |  0=>0   =1
B2':~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 |  0=>1   =1
     a   b  c    1        2    3    4        5    6    7  8    9

Definicja:
Tabelę T3_789 nazywamy definicją warunku wystarczającego => w logice dodatniej (bo q) dla potrzeb rachunku zerojedynkowego.

Interpretacja warunku wystarczającego =>:
T3_789: p=>q - zajście p jest wystarczające => dla zajścia q

Do zapamiętania:
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego
   p  q  Y=(p=>q)=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q


2.17.2 Zero-jedynkowa definicja warunku koniecznego ~p~>~q

Zapiszmy tabelę prawdy operatora implikacji prostej p||=>q w wersji skróconej:
Kod:

T2
Definicja     |Co w logice
symboliczna   |jedynek oznacza
p||=>q        |
A1:  p=> q =1 |( p=1)=> ( q=1)=1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1
B2':~p~~>q =1 |(~p=1)~~>( q=1)=1
     a   b  c    1        2    3

Zero-jedynkową definicje warunku koniecznego ~p~>~q w logice ujemnej (bo ~q) otrzymamy kodując tabelę T2 z punktem odniesienia ustawionym na warunku koniecznym ~>:
A2: ~p~>~q
W warunku koniecznym A2: ~p~>~q zmienne p i q są w postaci zanegowanej.

Tabelę zero-jedynkową warunku koniecznego ~> A2: ~p~>~q w logice ujemnej (bo ~q) otrzymamy wtedy i tylko wtedy gdy wszystkie zmienne w tabeli T2_12 sprowadzimy do postaci zanegowanej.
Umożliwia to I prawo Prosiaczka (pkt. 1.2):
(p=1)=(~p=0)
które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Zróbmy to:
Kod:

T4
Definicja     |Co w logice       |Na mocy I         |Zapis tożsamy
symboliczna   |jedynek oznacza   |prawa Prosiaczka  |tabeli 456
p||=>q        |                  |                  | ~p ~q ~p~>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 |  0~>0   =1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 |  0~>1   =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |(~p=1)~> (~q=1)=1 |  1~>1   =1
B2':~p~~>q =1 |(~p=1)~~>( q=1)=1 |(~p=1)~~>(~q=0)=1 |  1~>0   =1
     a   b  c    1        2    3    4        5    6    7  8    9

Definicja:
Tabelę T4_789 nazywamy zero-jedynkową definicją warunku koniecznego ~> w logice ujemnej (bo ~q):
Interpretacja:
T4_789: ~p~>~q - zajście ~p jest konieczne ~> dla zajścia ~q

2.17.3 Prawo porównywania w rachunku zero-jedynkowym

Prawo porównywania w rachunku zero-jedynkowym:
W rachunku zero-jedynkowym zachodząca tożsamość kolumn wynikowych jest dowodem zachodzenia prawa logiki matematycznej wtedy i tylko wtedy na wejściu mamy identyczną matrycę zmiennych wejściowych p i q "ab".

Zauważmy że:
W tabelach T3 i T4 wejściowa definicja operatora implikacji prostej p||=>q jest identyczna
Stąd:
Tożsamość kolumny wynikowej 9 w tabelach T3 i T4 jest dowodem zero-jedynkowym doskonale nam znanego prawa Kubusia.

Prawo Kubusia
T3_789: p=>q [=] T4_789: ~p~>~q
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:25, 07 Maj 2024    Temat postu:

Algebra Kubusia dla matematyków
28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia

Spis treści
28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia 1
28.1 Zdania zawsze prawdziwe (=>) w KRZ i algebrze Kubusia (=>) 2
28.1.1 Zdanie zawsze prawdziwe w implikacji => rodem z KRZ 2
28.1.2 Zdanie zawsze prawdziwe w warunku wystarczającym => rodem z AK 5
28.2 Obsługa zdań warunkowych „Jeśli p to q” w algebrze Kubusia 7
28.3 Sztandarowy przykład implikacji prostej P|=>4L w zbiorach 8
28.3.1 Definicja operatora implikacji prostej P||=>4L w zbiorach 10
28.4 Paradoks i brak paradoksu w algebrze Kubusia 13
28.4.1 Paradoks w algebrze Kubusia 13
28.4.2 Brak paradoksu w algebrze Kubusia 14
28.5 Prawo eliminacji równoważności p<=>q w logice matematycznej 16
28.6 Funkcja tożsamościowa - tragedia ziemskiej logiki matematycznej 18


28.0 Klasyczny Rachunek Zdań vs Algebra Kubusia

Dyskutując od 18 lat w temacie algebry Kubusia na różnych forach, ja Rafał3006, od zawsze byłem wściekle zwalczany przez fanatyków KRZ.
Za propagowanie algebry Kubusia wszędzie dostawałem bana: racjonalista.pl, ateista.pl, yrizona, a nawet na matematyce.pl - na szczęście na matematyce.pl był to ban na 6 miesięcy dawno temu, dzięki czemu aktualnie istnieję na matematyce,pl.
[link widoczny dla zalogowanych]

Przykład wściekłego ataku fanatyka KRZ ze śfinii:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6475.html#793575
@matematyk szaryobywatel w dyskusji ze mną napisał:
Upośledzenie to nic śmiesznego, niemniej za zasrywanie forum swoim spamem, kompletny brak szacunku dla użytkowników do których krytyki się w ogóle nie odnosisz, tylko zasrywasz dalej tymi samymi bredniami cały czas myśląc że jesteś na tropie czegoś genialnego, powinieneś być trwale wyłączony z dyskusji.

Co do wytłuszczonego:
100% definicji w algebrze Kubusia jest innych, niż w jakiejkolwiek logice matematycznej ziemskich matematyków, więc jak się mam odnosić do krytyki AK z punktu widzenia KRZ?

Odezwa do fanatyków ziemskich logik matematycznych podobnych do szarego obywatela:

Panowie, wasze pojęcie algebry Boole’a rozdmuchane do granic możliwości np. algebra Boole’a zupełna, funkcje kardynalne i inne głupoty nie mają zastosowania w matematycznej obsłudze języka potocznego człowieka, dlatego one mnie totalnie nie interesują.

Dajcie żyć, nie zwalczajcie czegoś (algebry Kubusia), czego totalnie nie rozumiecie w stylu szarego obywatela jak wyżej.

Jeśli chcecie obalać algebrę Kubusia to zapraszam do jej czytania od A do Z.
Algebra Kubusia zostanie obalona wtedy i tylko wtedy gdy znajdziecie jedną, jedyną, wewnętrzną sprzeczność w trakcie jej czytania.

Oczywiście wszelkie niejasności póki żyję, będę wam wyjaśniał.
Rafal3006


28.1 Zdania zawsze prawdziwe (=>) w KRZ i algebrze Kubusia (=>)

100% definicji w algebrze Kubusia jest innych, niż w jakiejkolwiek logice matematycznej ziemskich matematyków.
Z powyższego można wnioskować, że świat algebry Kubusia jest rozłączny ze światem Klasycznego Rachunku Zdań bez żadnego wspólnego punktu zaczepienia.
Na szczęście to nieprawda, istnieje nasz wspólny punkt zaczepienia, o czym będzie w niniejszym rozdziale.

28.1.1 Zdanie zawsze prawdziwe w implikacji => rodem z KRZ

Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.

W obsłudze zdań warunkowych „Jeśli p to q” ziemska logika matematyczna obligatoryjnie korzysta z prawa eliminacji implikacji
Y = (p=>q) =~p+q

Spójrzmy na zero-jedynkową definicję ziemskiej implikacji p=>q.
Kod:

Zapis                   |Zapis
zero-jedynkowy          |symboliczny
   p  q   Y=(p=>q)=~p+q |       Y=(p=>q)=~p+q
A: 1  1  =1             | p* q =1
B: 1  0  =0             | p*~q =0
C: 0  0  =1             |~p*~q =1
D: 0  1  =1             |~p* q =1
   1  2   3               4  5  6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)

Dla tabeli zero-jedynkowej ABCD123 odczytujemy:
Y=1 <=> A: p=1 i q=1 lub C: p=0 i q=0 lub D: p=0 i q=1
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(p=0)=(~p=1)
Na mocy prawa Prosiaczka wszystkie wejścia sprowadzamy do jedynek:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Jedynki w naturalnej logice człowieka są domyślne i możemy je pominąć.
Stąd mamy symboliczny opis implikacji wyrażonej spójnikami „i’(*) i „lub”(+) w zbiorach/zdarzeniach rozłącznych:
1”: Y = A:p*q + C: ~p*~q + D: ~p*q
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
1”: Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Minimalizujemy funkcję logiczną 1”:
Y = p*q + ~p*~q + ~p*q
Y = p*q + ~p*(~q+q)
Y = ~p+(p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y = p*(~p+~q)
~Y = p*~p + p*~q
~Y = p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
1: Y = ~p+q
Jak widzimy, udowodniliśmy że:
1: Y=~p+q [=] 1”: Y = p*q + ~p*~q + ~p*q
cnd

Weźmy teraz przykład idealnie pasujący do ziemskiej definicji implikacji na poziomie 5-cio latka.
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Jak udowodnić prawdziwość tego zdania na gruncie definicji implikacji rodem ze współczesnej logiki matematycznej?
Współczesna logika matematyczna obligatoryjnie korzysta tu z prawa eliminacji implikacji przechodząc do funkcji logicznej algebry Boole’a - wyłącznie spójniki „lub”(+) i „i’(*)

Przypomnijmy sobie definicje funkcji logicznej algebry Boole’a.

Definicja wyrażenia algebry Boole'a:
Wyrażenie algebry Boole'a f(x) to zmienne binarne połączone spójnikami "i"(*) i "lub"(+)

Definicja funkcji logicznej algebry Boole'a:
Funkcja logiczna Y algebry Boole'a to zmienna binarna odzwierciedlająca binarne zmiany wyrażenia algebry Boole'a f(x) w osi czasu.

Prawo eliminacji implikacji p=>q rodem z KRZ to:
Definicja implikacji p=>q wyrażona spójnikami „i”(*) i „lub”(+)
Y = (p=>q)=~p+q = A:p*q + C: ~p*~q + D: ~p*q
Podstawmy:
p=P(pies)
q=4L(cztery łapy)

Stad nasza funkcja logiczna Y w zapisie aktualnym:
Y = (P=>4L) = A: P*4L + C:~P*~4L + D:~P*4L
na mocy definicji funkcji logicznej Y wystarczy, że dowolny składnik sumy logicznej przyjmie wartość logiczną 1 i już funkcja logiczna przybierze wartość logiczną Y=1.

Zapiszmy nasz przykład w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod:

Zapis
symboliczny
   p  q   Y=(p=>q) |        Y=(P=>4L)=A: P*4L+C:~P*~4L+ D:~P*4L
A: p* q =1         | P* 4L =1 - jest (=1) pies
B: p*~q =0         | P*~4L =0 - nie ma (=0) psa który nie ma czterech łap
C:~p*~q =1         |~P*~4L =1 - jest (=1) kura, mrówka ..
D:~p* q =1         |~P* 4L =1 - jest (=1) słoń, żyrafa ..
   4  5  6           7  8   9

Na mocy definicji implikacji wymagane jest, aby wyłącznie pudełko B było puste, pozostałe muszą być niepuste.
Jak widzimy zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery lapy
P=>4L =1
Spełnia definicję implikacji, stąd jego wartość logiczna to 1.

Funkcja logiczna Y skolerowana ze zdaniem A1 jest prawdziwa nie tylko dla psa (A), ale również dla kury (C) i słonia (D), czyli dla absolutnie wszystkich zwierząt chodzących po naszej planecie bo nie ma żadnego zwierzątka w pudełku B.

Wyobraźmy sobie teraz fanatyka KRZ który postanowił nauczyć dzieci aktualnie obowiązującej logiki matematycznej w przedszkolu.

Fanatyk KRZ:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
1.
Fanatyk KRZ:
Powiedzcie mi dzieci, czy zdanie A1 jest prawdziwe dla psa?
Dzieci chórem:
Tak, jest prawdziwe
2.
Fanatyk KRZ:
Czy zdanie A1 jest prawdziwe dla kury?
Dzieci chórem:
Jest fałszywe, bo kura nie jest psem.
Fanatyk KRZ:
Mylicie się dzieci, zdanie A1 jest prawdziwe, tak nam mówi logika matematyczna zwana KRZ.
3.
Fanatyk KRZ:
Ostatnie pytanie:
Czy zdanie A1 jest prawdziwe dla słonia?
Dzieci chórem:
Zdanie A1 jest fałszywe dla słonia, bo słoń nie jest psem
Fanatyk KRZ:
Znowu pudło, zdanie A1 jest prawdziwe dla słonia wedle świętości wszystkich matematyków, logiki matematycznej zwanej KRZ.
Na to wkurzony Jaś (lat 5):
Jak rozumiem, wedle pana logiki pewnie Kopernik była kobietą, tak?

28.1.2 Zdanie zawsze prawdziwe w warunku wystarczającym => rodem z AK

Implikacja p=>q rodem z KRZ i warunek wystarczający p=>q rodem z algebry Kubusia mają identyczne definicje zero-jedynkowe, ale różnice w definicjach rodem z otaczającej nas rzeczywistości są fundamentalne.

1.
Definicja ziemskiej implikacji
podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.

2.
Definicja warunku wystarczającego => w zbiorach w algebrze Kubusia


Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona

Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q

Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Przykład:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L =1
Bycie psem jest warunkiem wystarczającym => by mieć cztery łapy, wtedy i tylko wtedy gdy zbiór psów p=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Każdy 5-cio latek widzi, że definicja podzbioru jest tu spełniona, co jest dowodem prawdziwości zdania A1.

Zauważmy, fundamentalną różnicę między pojęciem implikacji => z KRZ a warunkiem wystarczającym => w algebrze Kubusia mimo że definicje zero-jedynkowe są tu identyczne.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Przykład:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L =1
Bycie psem jest warunkiem wystarczającym => by mieć cztery łapy, wtedy i tylko wtedy gdy zbiór psów p=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Każdy 5-cio latek widzi, że definicja podzbioru jest tu spełniona, co jest dowodem prawdziwości zdania A1.

Na mocy definicji kontrprzykładu prawdziwość warunku wystarczającego A1: P=>4L=1 wymusza fałszywość kontrprzykładu A1’
A1’
Jeśli zwierzę jest psem to może ~~> nie mieć czterech łap
P~~>~4P = P*~4L=0
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać fałszywości zdania A1’, co nie oznacza, że nie możemy tego zrobić
Dowód wprost:
Nie istnieje zwierzę (=0) będące psem (P) i nie mające czterech łap (~4L)
Oczywistość dla każdego 5-cio latka, bo w logice matematycznej za psa przyjmujemy „wzorzec psa”, czyli zwierzę zdrowe z czterema łapami.

Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’

Weźmy symboliczną tabelę zero-jedynkową warunku wystarczającego p=>q w algebrze Kubusia która będzie identyczna jak wyprowadzona wyżej symboliczna definicja implikacji p=>q rodem z KRZ.

Zapiszmy nasz przykład w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod:

Zapis
symboliczny
   p  q   Y=(p=>q) |        Y=(P=>4L)=A: P*4L+C:~P*~4L+ D:~P*4L
A: p* q =1         | P* 4L =1 - jest (=1) pies
B: p*~q =0         | P*~4L =0 - nie ma (=0) psa który nie ma czterech łap
C:~p*~q =1         |~P*~4L =1 - jest (=1) kura, mrówka ..
D:~p* q =1         |~P* 4L =1 - jest (=1) słoń, żyrafa ..
   4  5  6           7  8   9

Oczywiście również w algebrze Kubusia mamy prawo eliminacji warunku wystarczającego => w postaci przejścia do tożsamej funkcji logicznej Y=(p=>q) wyrażonej spójnikami „i”(*) „lub”(+).

Prawo eliminacji warunku wystarczającego p=>q w algebrze Kubusia to:
Definicja warunku wystarczającego p=>q w algebrze Kubusia wyrażona spójnikami „i”(*) i „lub”(+)
Y = (p=>q)=~p+q = A: p*q + C: ~p*~q + D: ~p*q
Podstawmy:
p=P(pies)
q=4L(cztery łapy)

Stad nasza funkcja logiczna Y w zapisie aktualnym:
Y = (P=>4L) = A: P*4L + C:~P*~4L + D:~P*4L
na mocy definicji funkcji logicznej Y wystarczy, że dowolny składnik sumy logicznej przyjmie wartość logiczną 1 i już funkcja logiczna przybierze wartość logiczną Y=1.

Dalsza analiza i wnioski po zastosowaniu prawa eliminacji warunku wystarczającego p=>q w algebrze Kubusia będą identyczne jak w implikacji p=>q rodem z definicji implikacji rodem z KRZ (pkt. 28.1.1)
Na tym poletku zgodność algebry Kubusia z Klasycznym Rachunkiem Zdań jest 100% - nie ma absolutnie żadnych różnic.

Jaki jest zatem sens pisania, że 100% definicji w algebrze Kubusia jest innych niż w KRZ?
Ten powód to fundamentalnie inne definicje rzeczywiste (związane z otaczającą nas rzeczywistością) podane na początku niniejszego punktu.
Jak widzimy, definicja implikacji p=>q rodem z KRZ ma zero wspólnego z otaczającą nas rzeczywistością natomiast definicja warunku wystarczającego p=>q definiowana jako relacja podzbioru => ma 100% związku z rzeczywistością i jest łatwa do udowodnienia bez korzystania z jakichkolwiek tabel zero-jedynkowych.

28.2 Obsługa zdań warunkowych „Jeśli p to q” w algebrze Kubusia

Jak widzimy wyżej, skorzystanie z prawa eliminacji warunku wystarczającego p=>q w postaci:
Y = (p=>q) =~p+q
choć poprawne matematycznie prowadzi do paradoksu polegającego na tym że zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Jest prawdziwe dla absolutnie wszystkich zwierząt na naszej planecie, czyli nie tylko dla psa, ale również dla kury, mrówki, węża, wieloryba, słonia, kota etc.
Oczywistym jest, że z takiego rozstrzygnięcia, mimo że matematycznie poprawnego, pękać będą ze śmiechu wszystkie 5-cio latki, a pani przedszkolanka będzie się wymownie stukać palcem w czółko.

Jak uniknąć tego paradoksu tzn. czy istnieje poprawna logika matematyczna eliminująca ten paradoks?
Odpowiedź na to pytanie jest twierdząca - to algebra Kubusia.

W tym momencie czytelnik proszony jest o przeczytaniu potrzebnych dla dalszych wywodów następujących fragmentów algebry Kubusia:
2.3 Elementarne spójniki implikacyjne w zbiorach
2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~>
2.8.1 Prawo Słonia dla zbiorów
2.10 Podstawowe spójniki implikacyjne

28.3 Sztandarowy przykład implikacji prostej P|=>4L w zbiorach

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań

Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)

Rozważmy nasze zdanie A1.
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L=1
Nasz punkt odniesienia na mocy prawa Kłapouchego to:
p=P(pies)
q=4L(cztery łapy)
Stąd zdanie A1 w zapisie formalnym (ogólnym):
A1: p=>q =1
Zauważmy, że zdanie A1 to pozycja A1 w tabeli T0 wyżej.
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy bo zbiór p=[pies] jest (=1) podzbiorem zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Bycie psem daje nam gwarancję matematyczną => że mamy cztery łapy
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczne =>
Uwaga:
W logice matematycznej za psa przyjmujemy wzorzec psa, czyli zwierzę zdrowe ze wszystkimi czterema łapami.

Przyjmujemy dziedzinę:
ZWZ - zbiór wszystkich zwierząt
ZWZ=[pies, kura, słoń ..]
Wyznaczamy wszystkie możliwe zbiory {p, q, ~p, ~q} które będą nam potrzebne w analizie matematycznej.
Z definicji mamy:
p=[P]=[pies]
q=[4L]=[słoń ..]
ZWZ=[pies, kura, słoń ..]
Obliczamy przeczenia zbiorów definiowane jako ich uzupełnienia do wspólnej dziedziny ZWZ
~p=~P=[ZWZ-P]=[kura, słoń ..]
~q=~4L=[ZWZ-4L]=[pies, kura ..]

Aby rozstrzygnąć z jakim spójnikiem logicznym mamy do czynienia musimy rozstrzygnąć o prawdziwości/fałszywości dowolnego zdania z linii Bx (tabela T0).

Mamy nasze zdanie:
A1: P=>4L=1
To samo w zapisie formalnym:
A1: p=>q
Gdzie:
p=P(pies)
q=4L(cztery lapy)
##
Wybieramy twierdzenie odwrotne do twierdzenia A1, czyli zdanie B3,
B3.
Jeśli zwierzę ma cztery lapy to jest psem
B3: 4L=>P =0
To samo w zapisie formalnym:
B3: q=>p =0
Bo kontrprzykład: słoń ma cztery łapy ale nie jest psem
cnd
Gdzie:
## - różne na mocy definicji

W tym momencie prawdziwość/fałszywość wszelkich zdań w tabeli T0 mamy zdeterminowaną (znaną).

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:      A2B2:      |     A3B3:      A4B4:
A: 1: p=>q =1  2:~p~>~q =1 [=] 3: q~>p =1  4:~q=>~p =1 [=] 5:~p+ q
A: 1: P=>4L=1  2:~P~>~4L=1 [=] 3: 4L~>P=1  4:~4L=>~P=1 [=] 5:~P+ 4L
      ##         ##              ##          ##              ##
B: 1: p~>q =0  2:~p=>~q =0 [=] 3: q=>p =0  4:~q~>~p =0 [=] 5: p+~q
B: 1: P~>4L=0  2:~P=>~4L=0 [=] 3: 4L=>P=0  4:~4L~>~P=0 [=] 5: P+~4L
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy rozstrzygnięcie, że nasze zdania w kolumnie bazowej A1B1 to definicja implikacji prostej p|=>q

Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)

Nasz przykład:
Definicja implikacji prostej P|=>4L:
Implikacja prosta P|=>4L w logice dodatniej (bo 4L) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: P=>4L =1 - bycie psem (P) jest (=1) wystarczające => by mieć cztery łapy (4L)
B1: P~>4L =0 - bycie psem (P) nie jest (=0) konieczne ~> by mieć cztery łapy (4L)
Stąd w zapisie aktualnym (przykład) mamy:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta P|=>4L w logice dodatniej (bo 4L) jest spełniona (=1) wtedy i tylko wtedy gdy bycie psem jest (=1) wystarczające => by mieć cztery łapy (A1), ale nie jest (=0) konieczne ~> by mieć cztery łapy (B1)

28.3.1 Definicja operatora implikacji prostej P||=>4L w zbiorach

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Definicja operatora implikacji prostej P||=>4L w zapisie aktualnym:
Operator implikacji prostej P||=>4L to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o P (A1B1) i ~P (A2B2).
Kolumna A1B1:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) - co może się wydarzyć jeśli zwierzę jest psem (P)
Kolumna A2B2:
A2B2: ~P|~>~4L = (A2:~P~>~4L)*~(B2: ~P=>~4L) - co może się wydarzyć zwierzę nie jest psem (~P)

Wyznaczamy wszystkie możliwe zbiory {p, q, ~p, ~q} które będą nam potrzebne w analizie matematycznej.
Z definicji mamy:
p=[P]=[pies]
q=[4L]=[słoń ..]
ZWZ=[pies, kura, słoń ..]
Obliczamy przeczenia zbiorów definiowane jako ich uzupełnienia do wspólnej dziedziny ZWZ
~p=~P=[ZWZ-P]=[kura, słoń ..]
~q=~4L=[ZWZ-4L]=[pies, kura ..]

A1B1:
W kolumnie A1B1 mamy odpowiedź na pytanie o psa:

Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa?
A1: P=>4L =1 - bycie psem (P) jest (=1) wystarczające => by mieć cztery łapy (4L)
B1: P~>4L =0 - bycie psem (P) nie jest (=0) konieczne ~> by mieć cztery łapy (4L)
Stąd w zapisie aktualnym (przykład) mamy:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1

A1B1:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt wylosujemy psa (P)?

Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1.
A1.
Jeśli dowolne zwierzę jest psem to na 100% => ma cztery łapy
P=>4L =1
To samo w zapisie formalnym:
p=>q =1
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy wtedy i tylko wtedy gdy zbiór P=[pies] jest (=1) podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’
Jeśli dowolne zwierzę jest psem to może ~~> nie mieć czterech lap
P~~>~4L = P*~4L =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Fałszywość kontrprzykładu A1’ wynika z definicji kontrprzykładu - to jest dowód „nie wprost”.
Nie musimy tu wykonywać dowodu wprost, czyli udowadniać iż zbiory P=[pies] i ~4L=[kura ..] są rozłączne.

… a jeśli zwierzę nie jest pasem?
A1: P=>4L = A2: ~P~>~4L
Prawo Kubusia w zapisie formalnym:
A1: p=>q = A2: ~p~>~q
Idziemy do kolumny A2B2

A2B2:
W kolumnie A2B2 mamy odpowiedź na pytanie o nie psa (~P):

Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem?
A2: ~P~>~4L=1 - nie bycie psem (~P) jest (=1) konieczne ~> by nie mieć czterech łap (~4L)
B2: ~P=>~4L=0 - nie bycie psem (~P) nie jest (=0) wystarczające => by nie mieć czterech łap (~4L)
Stąd w zapisie aktualnym (przykład) mamy:
A2B2: ~P|~>~4L = (A1:~P~>~4L)*~(~P=>~4L) =1*~(0)=1*1=1

A2B2:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt wylosujemy zwierzę nie będące psem?

Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2.
A2.
Jeśli dowolne zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L =1
To samo w zapisie formalnym
~p~>~q =1
Prawdziwość warunku koniecznego ~> A2 gwarantuje nam prawo Kubusia, to jest dowód „nie wprost”.
Z prawa Kubusia wynika, że zbiór ~P=[kura, słoń ..] jest nadzbiorem ~> ~4L=[kura..] - nie musimy tego faktu udowadniać.
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
Nie bycie psem (~P) jest konieczne ~> by nie mieć czterech łap (~4L), bo jak się jest psem (P) to na 100% => ma się cztery łapy (4L)
A2: ~P~>~4L + A1: P=>4L

LUB

Fałszywy warunek wystarczający B2: ~P=>~4L=0 na mocy definicji kontrprzykładu daje nam gwarancję matematyczną prawdziwości kontrprzykładu B2’
B2’
Jeśli dowolne zwierzę nie jest psem to może ~~> mieć czterech łap
~P~~>4L = ~P*4L =1
To samo w zapisie formalnym:
~p~~>q = ~p*q =1
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać prawdziwości zdania B2’
Dowód wprost:
Istnieje (=1) wspólny element zbiorów ~P=[kura, słoń ..] i 4L=[pies, słoń ..], to słoń
cnd

Podsumowanie:
Operator implikacji prostej P||=>4L to gwarancja matematyczna => po stronie psa (P) o czym mówi zdanie A1 i najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po nie psa (~P) o czym mówią zdania A2 i B2’

Innymi słowy:
1.
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa (P) to mamy gwarancję matematyczną => iż będzie on miał cztery łapy (4L) - mówi o tym zdanie A1
2.
Natomiast:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem (~P) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania A2 i B2’
Czyli:
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P) to zwierzę to może ~> nie mieć czterech łap (~4L) o czym mówi zdanie A2 albo może ~~> mieć cztery łapy na mocy zdania B2’

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~P||~>~4L to układ równań logicznych:
A2B2: ~P|~>~4L = (A2:~P~>~4L)*~(B2: ~P=>~4L) - co będzie się działo jeśli zwierzę nie jest psem (~P)?
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) - co będzie się działo jeśli zwierzę jest psem (P)?
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~P||~>~4L w logice ujemnej (bo ~4L) będzie identyczna jak operatora implikacji prostej P||=>4L w logice dodatniej (bo 4L) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

28.4 Paradoks i brak paradoksu w algebrze Kubusia

Kiedy w algebrze Kubusia nie ma paradoksu?
W algebrze Kubusia nie ma paradoksu jeśli zdanie warunkowe „Jeśli p to q” jest analizowane w warunkach wystarczających => i koniecznych ~>

Kiedy w algebrze Kubusia jest paradoks?
W algebrze Kubusia jest paradoks jeśli skorzystamy z prawa eliminacji warunku wystarczającego =>:
Y = (p=>q)=~p+q

28.4.1 Paradoks w algebrze Kubusia

Na czym polega paradoks w algebrze Kubusia?
Paradoks ten opisaliśmy w punkcje 28.1.2.

Zobaczmy na naszym przykładzie:
A1.
Jeśli zwierzę jest psem to na 100% => ma cztery łapy
P=>4L=1

Prawo eliminacji warunku wystarczającego => dla zdania A1.
A1: Y=(p=>q)=~p+q
Matematycznie wolno nam skorzystać z prawa eliminacji warunku wystarczającego =>, czyli od strony czysto matematycznej jest tu wszystko w porządku

ALE!
Jeśli dla zdania A1 skorzystamy z prawa eliminacji warunku wystarczającego => przechodząc do warunku wystarczającego wyrażonego spójnikami „i”(*) i „lub”(+) to dostaniemy paradoks z którego będą pękać ze śmiechu wszystkie 5-cio latki, a pani przedszkolanka będzie pukać się w czółko.
Dlaczego?
Weźmy nasze zdanie:
A1.
Jeśli zwierzę jest psem to na 100% => ma cztery łapy
P=>4L=1
Po skorzystaniu z prawa eliminacji warunku wystarczającego => jak sama nazwa wskazuje zabijamy warunek wystarczający =>, kwintesencję zdania A1.
Wtedy wyjdzie nam, że zdanie A1 jest prawdziwe dla absolutnie wszystkich zwierząt: psa, kury, wieloryba, muchy, słonia …

28.4.2 Brak paradoksu w algebrze Kubusia

W algebrze Kubusia nie ma paradoksu wtedy i tylko wtedy gdy zdanie warunkowe „Jeśli p to q” będziemy definiować warunkami wystarczającymi => i koniecznymi ~> co zrobiliśmy w punkcie 28.3.1

Przypomnijmy tą analizę w formie skróconej:
A1: P=>4L=1 - bycie psem wystarcza => (=1) by mieć cztery lapy
A1’: P~~>~4L=0 - nie istnieje (=0) pies, który nie ma czterech łap
A2: ~P~>~4L=1 - nie bycie psem jest (=1) konieczne ~> by nie mieć czterech łap (~4L)
B2’: ~P~~>4L=1 - istnieje (=1) zwierzę nie będące psem i mające cztery lapy (słoń)

Zauważmy że:
A1.
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa to dla tego przypadku prawdziwe będzie zdania A1, zaś wszystkie pozostałe będą fałszywe.
A1’.
Psa który niema czterech lap nigdy (=0) nie wylosujemy
A2.
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie jest psem i nie ma czterech łap to prawdziwe będzie wyłącznie zdanie A2, zaś wszystkie pozostałe zdania będą fałszywe
B2’
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie jest psem i ma cztery łapy to prawdziwe będzie wyłącznie zdanie B2’, zaś wszystkie pozostałe zdania będą fałszywe

Zauważmy, że zdania A1, A1’, A2 i B2’ możemy wypowiadać w oryginale i niezależnie od siebie.

Przypomnijmy te zdania:
A1.
Jeśli dowolne zwierzę jest psem to na 100% => ma cztery łapy
P=>4L =1
To samo w zapisie formalnym:
p=>q =1
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy wtedy i tylko wtedy gdy zbiór P=[pies] jest (=1) podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’
Jeśli dowolne zwierzę jest psem to może ~~> nie mieć czterech lap
P~~>~4L = P*~4L =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Fałszywość kontrprzykładu A1’ wynika z definicji kontrprzykładu - to jest dowód „nie wprost”.
Nie musimy tu wykonywać dowodu wprost, czyli udowadniać iż zbiory P=[pies] i ~4L=[kura ..] są rozłączne.
Dowód wprost:
Nie istnieje zwierzę będące psem (P) i nie mające czterech łap (4L)
P~~>~4L =0

… a jeśli zwierzę nie jest pasem?
A1: P=>4L = A2: ~P~>~4L
Prawo Kubusia w zapisie formalnym:
A1: p=>q = A2: ~p~>~q
Idziemy do kolumny A2B2

A2.
Jeśli dowolne zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L =1
To samo w zapisie formalnym
~p~>~q =1
Prawdziwość warunku koniecznego ~> A2 gwarantuje nam prawo Kubusia, to jest dowód „nie wprost”.
Z prawa Kubusia wynika, że zbiór ~P=[kura, słoń ..] jest nadzbiorem ~> ~4L=[kura..] - nie musimy tego faktu udowadniać.
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
Nie bycie psem (~P) jest konieczne ~> by nie mieć czterech łap (~4L), bo jak się jest psem (P) to na 100% => ma się cztery łapy (4L)
A2: ~P~>~4L + A1: P=>4L

LUB

Fałszywy warunek wystarczający B2: ~P=>~4L=0 na mocy definicji kontrprzykładu daje nam gwarancję matematyczną prawdziwości kontrprzykładu B2’
B2’
Jeśli dowolne zwierzę nie jest psem to może ~~> mieć czterech łap
~P~~>4L = ~P*4L =1
To samo w zapisie formalnym:
~p~~>q = ~p*q =1
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać prawdziwości zdania B2’
Dowód wprost:
Istnieje (=1) wspólny element zbiorów ~P=[kura, słoń ..] i 4L=[pies, słoń ..], to słoń
cnd

Zauważmy, że matematyczną prawdziwość/fałszywość każdego ze zdań A1, A1’, A2 i B2’ możemy udowodnić niezależnie od prawdziwości/fałszywości pozostałych zdań.
Nie ma tu zatem mowy o jakimkolwiek paradoksie i mamy dostęp do zdań warunkowych A1’, A2, B2’ czego nie mieliśmy w przypadku skorzystania z prawa eliminacji warunku wystarczającego =>:
Y = (P=>4L) = ~P+4L
cnd

28.5 Prawo eliminacji równoważności p<=>q w logice matematycznej

Definicja równoważności p<=>q w logice matematycznej:
Równoważność p<=>q to jednoczesne spełnienie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
To samo w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Interpretacja matematycznie poprawna, znana każdemu matematykowi to:
Równoważność p<=>q to jednoczesne zajście zarówno warunku koniecznego ~> (B1) jak i wystarczającego => (A1) między tymi samymi punktami i w tym samym kierunku
Innymi słowy:
Zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p

Dowód iż ta definicja równoważności znana jest ludzkości (nie tylko matematykom).
Klikamy na goglach:
„koniecznym i wystarczającym”
Wyników: 9 750
„konieczne i wystarczające”
Wyników: 11 300
„potrzeba i wystarcza”
Wyników: 4 170
cnd

Zobaczmy to na przykładzie równoważności Pitagorasa TP<=>SK udowodnionej w ziemskiej matematyce poprawnie wieki temu.

Twierdzenie proste Pitagorasa p=>q:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
To samo w zapisie formalnym:
p=>q =1
Bycie trójkątem prostokątnym TP jest (=1) warunkiem wystarczającym => do tego, aby spełniona była suma kwadratów (SK)
Twierdzenie proste Pitagorasa ludzkość udowodniła wieki temu

##
Twierdzenie odwrotne Pitagorasa q=>p:
B3.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% => trójkąt ten jest prostokątny
SK=>TP =1
To samo w zapisie formalnym:
q=>p =1
Bycie trójkątem ze spełnioną sumą kwadratów (SK) jest (=1) warunkiem wystarczającym => do tego, aby ten trójkąt był prostokątny (TP)
Twierdzenie odwrotne Pitagorasa ludzkość udowodniła wieki temu

Dla B3 zastosujmy prawo Tygryska:
B3: q=>p = B1: p~>q
Stąd mamy:
B1: TP~>SK =1 - bycie TP jest (=1) warunkiem koniecznym ~> dla spełnienia SK

Dziedzina wspólna dla A1 i B1 to oczywiście:
ZWT - zbiór wszystkich trójkątów

Gdzie:
## - różne na mocy definicji

Stąd mamy:
Definicja równoważności Pitagorasa TP<=>SK:
Równoważność TP<=>SK to jednoczesne spełnienie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: TP=>SK =1 - wylosowanie TP ze zbioru ZWT jest (=1) wystarczające => dla SK
B1: TP~>SK =1 - wylosowanie TP ze zbioru ZWT jest (=1) konieczne ~> dla SK
To samo w równaniu logicznym:
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1=1
Interpretacja matematycznie poprawna, znana każdemu matematykowi:
Równoważność TP<=>SK to jednoczesne zajście zarówno warunku koniecznego ~> (B1) jak i wystarczającego => (A1) między tymi samymi punktami i w tym samym kierunku
Innymi słowy:
Zajście TP jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia SK
Innymi słowy:
Zajście TP jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia SK
Innymi słowy:
Do tego by zaszło SK potrzeba ~> (B1) i wystarcza (A1) by zaszło TP

Zastosujmy dla B1 prawo Kubusia:
B1: TP~>SK = B2: ~TP=>~SK
To samo w zapisie formalnym:
B1: p~>q = B3: ~p=>~q

Stąd mamy spełniony warunek wystarczający =>:
B2: ~TP=>~SK =1
Potrzebny nam do budowy symbolicznej definicji równoważności TP<=>SK w spójnikach „i”(*) i „lub”(+).

W algebrze Kubusia poprawne jest, znane matematykom prawo eliminacji równoważności p<=>q, czyli zapisanie równoważności w formie funkcji logicznej Y algebry Boole’a.

Spójrzmy na zero-jedynkową definicję równoważności p<=>q znaną każdemu matematykowi.
Kod:

Zapis                         |Zapis
zero-jedynkowy                |symboliczny
   p  q   Y=(p<=>q)=p*q+~p*~q |       Y=(p<=>q)=p*q+~p*~q
A: 1  1  =1                   | p* q =1 - obiekt istnieje (=1)
B: 1  0  =0                   | p*~q =0 - obiekt nie istnieje (=0)
C: 0  0  =1                   |~p*~q =1 - obiekt istnieje (=1)
D: 0  1  =0                   |~p* q =0 - obiekt nie istnieje (=0)
   1  2   3                     4  5  6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)

Z zapisu symbolicznego wynika, że po skorzystaniu z prawa eliminacji równoważności p<=>q, będziemy mieli do czynienia ze zdaniem zawsze prawdziwym we wspólnej dziedzinie dla p i q.

Zobaczmy to na przykładzie równoważności Pitagorasa TP<=>SK udowodnionej w ziemskiej matematyce poprawnie wieki temu.
Zapiszmy równoważność Pitagorasa w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod:

Zapis
symboliczny
   p  q   Y=(p<=>q) |         Y=(TP=>SK)=A: TP*SK+C:~TP*~SK
A: p* q =1          | TP* SK =1 - istnieje (=1) TP ze spełnioną SK
B: p*~q =0          | TP*~SK =0 - nie istnieje (=0) TP z niespełnioną SK
C:~p*~q =1          |~TP*~SK =1 - istnieje (=1) ~TP z niespełnioną SK (~SK)
D:~p* q =0          |~TP* SK =0 - nie istnieje (=0) ~TP ze spełniona SK
   4  5  6             7  8   9

W algebrze Kubusia mamy prawo skorzystać z prawa eliminacji równoważności p<=>q:
Y =(p<=>q) = p*q + ~p*~q
To jest matematycznie poprawne, ale zabijamy tu istotę równoważności, czyli obowiązujące w niej warunki konieczne ~> (B1) i wystarczające => (A1)

Nasz przykład:
Y = (TP<=>SK) = TP*SK + ~TP*~SK
Co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> TP=1 i SK=1 lub ~TP=1 i ~SK=1
Iterując zbiór wszystkich trójkątów ZWT element po elemencie możemy stwierdzić tylko i wyłącznie, że w wylosowanym trójkącie prostokątnym (TP) spełniona jest suma kwadratów TP*SK=1 lub w wylosowanym trójkącie nieprostokątnym (~TP) nie jest spełniona suma kwadratów ~TP*~SK=1
O żadnych warunkach koniecznych ~> (B1) i wystarczających => (A1) mowy tu być nie może.
Oczywistym jest że obiekty TP*~SK i ~TP*SK nie istnieją co oznacza, że tych obiektów nigdy nie wylosujemy

Poprawną analizę równoważności Pitagorasa TP<=>SK w warunkach koniecznych ~> (B1) i wystarczających => (A1) znajdziemy w punkcie 16.7

28.6 Funkcja tożsamościowa - tragedia ziemskiej logiki matematycznej

Prawo Czarnej Mamby:
Warunkiem koniecznym postawienia ziemskiej logiki matematycznej na nogi jest jej akceptacja prawa Irbisa, jako jednego z najważniejszych praw logiki matematycznej.

Kwintesencja obsługi teorii zdań warunkowych „Jeśli p to q” w algebrze Kubusia:
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Zobaczmy co na temat funkcji tożsamościowych pisze w Wikipedii:
http://www.sfinia.fora.pl/posting.php?mode=editpost&p=706875
@Wikipedia
Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność) – funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”.

To wytłuszczone w definicji tożsamościowej jest dowodem, iż chodzi tu o prawo Irbisa, na cześć mojego wroga Nr.1 Irbisola nazwane, który jako pierwszy ziemianin zgodził się na jego prawdziwość.

Weźmy przykład z Wikipedii równania tożsamościowego:
[link widoczny dla zalogowanych]
Równania tożsamościowe
Równania tożsamościowe - to takie równania, które mają nieskończenie wiele rozwiązań.
Jeżeli w równaniu tożsamościowym podstawimy pod x-a dowolną liczbę, to otrzymamy zawsze równanie prawdziwe.
2x=2x
5x−3=5x−3


Irbisolu,
Moje zapisy tożsamościowe, które podaję od zawsze typu:
2=2
2x=2x
TP=TP
Zbiór trójkątów prostokątnych TP = zbiór trójkątów prostokątnych TP
pies=pies
miłość=miłość
suche gacie na dnie morza = suche gacie na dnie morza
etc
To po prostu algebra Boole'a:
a=a

Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1

Podstawmy:
p=a
q=a
Stąd mamy:
a=a <=> A1B1: a<=>a = (A1: a=>a)*(B1:a~>a) =1*1=1
Dowód:
A1: a=>a =1 - bo każde pojęcie/zbiór/zdarzenie jest podzbiorem => siebie samego
B1: a~>a =1 - bo każde pojęcie/zbiór/zdarzenie jest nadzbiorem ~> siebie samego

Sam widzisz irbisolu, że ma się to nijak do twojej definicji funkcji tożsamościowej:
f(x)=x
Gdzie:
x - zmienna binarna
Stąd twoja szczegółowa definicja funkcji tożsamościowej to:
f(1)=1
f(0)=0

Niespodziewany zwrot akcji:
W mojej kilkunastostronicowej (albo i więcej) dyskusji z Irbisolem prosiłem go n-razy o podanie zero-jedynkowej definicji funkcji tożsamościowej na gruncie algebry Boole’a.
Oczywiście Irbisol nie podał takiej definicji bo nie ma jej w Wikipedii, a dla Irbisola Wikipedia jest najwyższą świętością, alfą i omegą.

Kilka dni temu modyfikując wstęp do algebry Kubusia odkryłem, że zero-jedynkowa definicja funkcji tożsamościowej jest w Wikipedii, tyle że ukryta, której żaden matematyk na światło dzienne nie wyciąga, bo jej po prostu nie rozumie.
Oto ta skrzętnie zakopana i ukryta prawda o rzeczywistej definicji funkcji tożsamościowej na gruncie algebry Boole’a

Matematycy znają zero-jedynkową tabelę wszystkich czterech jednoargumentowych spójników logicznych jak w linku niżej:
[link widoczny dla zalogowanych]
ale nie znają jej poprawnej interpretacji matematycznej
Poprawną interpretację matematyczną tej tabeli znajdziemy wyłącznie w algebrze Kubusia (pkt. 1.4)

Dokładnie w tym linku mamy zero-jedynkową definicję funkcji tożsamościowej.
Kod:

Definicja funkcji tożsamościowej wedle Wikipedii
to jest dokładnie to samo co funkcja transmitera w algebrze Kubusia
Wejście   | Wyjście
   p  ~p  | Y=p
A: 1 # 0  |  1
B: 0 # 1  |  0

Definicja transmitera w technicznej algebrze Boole’a:
Transmiter to jednowejściowa bramka logiczna opisana funkcją logiczną Y=p, gdzie na wyjście Y transmitowany jest zawsze sygnał wejściowy p bez zniekształceń.

Oczywiście nie ma sensu bym robił tu kopiuj wklejkę punktu 1.4 z niniejszego podręcznika.
Skupmy się na istocie operatora transmisji z algebry Kubusia, totalnie nieznanej ziemskim matematykom.
Dlaczego totalnie nieznanej?
Bo nie ma we współczesnej logice matematycznej kluczowego tu prawa, prawa Irbisa.

Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Jak do tej pory zaledwie jeden ziemianin rozumie i akceptuje prawo Irbisa - to Irbisol.

Weźmy fragment z algebry Kubusia dotyczący:
Funkcji tożsamościowej wedle logiki ziemian = funkcji transmisji wedle algebry Kubusia
Kod:

OT
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
        | A1:   B1:
p # ~p  | Y=p # ~Y=~p
Przykład który za chwilkę zrobimy p=K:
K # ~K  | Y=K # ~Y=~K
1 #  0  | 1   #  0
0 #  1  | 0   #  1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Pani w przedszkolu A1:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
#
Kiedy pani nie dotrzyma słowa (~Y=1)?
Negujemy równanie A1 stronami:
B1.
~Y=~K
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)

Gdzie:
# - dowolna strona znaczka # jest negacją drugiej sytrony

Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Podstawmy nasz przykład:
p=Y
q=K
Stąd dla naszego przykładu prawo Irbisa w logice dodatniej (bo K) przybiera postać:
Dwa pojęcia Y i K są tożsame Y=K wtedy i tylko wtedy gdy znajdują się w relacji równoważności Y<=>K
Y=K <=> A1B1: Y<=>K = (A1: Y=>K)*(B1: Y~>K)=1*1=1

Lewą stronę prawa Irbisa czytamy:
Na mocy prawa Irbisa zachodzi tożsamość pojęć Y=K:
Pojęcie „pani dotrzyma słowa” (Y) jest tożsame „=” z pojęciem „jutro pójdziemy do kina” (K)

Środek prawa Irbisa czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
A1B1: Y<=>K =1

Prawą stronę prawa Irbisa czytamy:
Dotrzymanie słowa przez panią (Y) jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) do tego, byśmy poszli do kina (K)
Innymi słowy:
Do tego byśmy poszli do kina (K) potrzeba ~> (B1) i wystarcza => (A1) by pani dotrzymała słowa (Y)

W logice matematycznej dowolne pojęcie p jest rozpoznawalne wtedy i tylko wtedy gdy rozpoznawalne jest pojęcie ~p

W logice matematycznej dowolną tożsamość „=” czy też równoważność <=> mamy prawo dwustronnie zanegować przechodząc do logiki przeciwnej z tym samym znaczkiem.

Dwustronna negacja warunku wystarczającego => czy też koniecznego ~> także jest możliwa na mocy praw Kubusia
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
Nasz przykład:
A1: Y=>K = A2: ~Y~>~K
B1: Y~>K = B2: ~Y=>~K

Stąd mamy prawo Irbisa w logice ujemnej (bo ~q):
Dwa pojęcia/zbiory/zdarzenia ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy znajdują się w relacji równoważności ~p<=>~q
~p=~q <=> A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1

Nasz przykład:
Prawo Irbisa w logice ujemnej (bo ~K):
Dwa pojęcia ~Y i ~K są tożsame ~Y=~K wtedy i tylko wtedy gdy znajdują się w relacji równoważności ~Y<=>~K
~Y=~K <=> A2B2: ~Y<=>~K = (A2: ~Y~>~K)*(B2: ~Y=>~K) =1*1=1

Lewą stronę prawa Irbisa czytamy:
Na mocy prawa Irbisa zachodzi tożsamość pojęć ~Y=~K:
Pojęcie „pani nie dotrzyma słowa” (~Y) jest tożsame „=” z pojęciem „jutro nie pójdziemy do kina” (~K)

Środek prawa Irbisa czytamy:
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K)
A2B2: ~Y<=>~K =1

Prawą stronę prawa Irbisa czytamy:
Nie dotrzymanie słowa przez panią (~Y) jest warunkiem koniecznym ~> (A2) i wystarczającym => (B2) do tego, byśmy nie poszli do kina (~K)
Innymi słowy:
Do tego byśmy nie poszli do kina (~K) potrzeba ~> (A2) i wystarcza => (B2) by pani nie dotrzymała słowa (~Y)

Matematyczne związki między prawem Irbisa w logice dodatniej (bo q) i ujemnej (bo ~q) są następujące:
1.
Zachodzi matematyczna tożsamość równoważności:
A1B1: p<=>q = A2B2: ~p<=>~q
Dowód:
A1B1: p<=>q = p*q + ~p*~q - definicja równoważności w spójnikach „i”(*) i „lub”(+)
Rozwijamy A2B2 definicją A1B1:
(~p)<=>(~q) = (~p)*(~q) + ~(~p)*~(~q)
~p<=>~q = ~p*~q + p*q
Stąd mamy:
A2B2: ~p<=>~q = A1B1: p<=>q = p*q + ~p*~q
cnd
2.
Zapiszmy w tabeli prawdy istotę operatora równoważności:
Kod:

Równoważność                |  Równoważność
A1B1: p<=>q                [=] A2B2: ~p<=>~q
Definiuje tożsamość pojęć:  |  definiuje tożsamość pojęć:
p=q                         #  ~p=~q
Gdzie:
Dowolna strona znaczka # jest negacją drugiej strony

3.
Nasz przykład:
Kod:

Równoważność                |  Równoważność
A1B1: Y<=>K                [=] A2B2: ~Y<=>~K
Definiuje tożsamość pojęć:  |  definiuje tożsamość pojęć:
Y=K                         #  ~Y=~K
Gdzie:
Dowolna strona znaczka # jest negacją drugiej strony

Z ostatniej linii widzimy że pojęcie Y (czy też K) związane jest z pojęciem ~Y (czy też ~K) spójnikiem „albo”($)
Dowód:
Jutro pani może dotrzymać słowa (Y) „albo”($) nie dotrzymać słowa (~Y)
Y$~Y =1
Trzeciej możliwości brak.

Sprawdzenie formalne.
Definicja spójnika „albo”($) w spójnikach „i”(*) i „lub”(+):
p$q = p*~q + ~p*q
Dla q=~p mamy:
p$~p = p*~(~p) + ~p*~(~p) = p*p + ~p*~p = p+~p =1
cnd

Oczywistym jest że równoważność (tożsamość) między p i ~p jest wykluczona.
Sprawdzenie formalne:
Definicja równoważności p<=>q w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
dla q=~p mamy:
p<=>(~p) = p*(~p) + ~p*~(~p) = p*~p + ~p*p = 0+0 =0
cnd

Zajrzyjmy jeszcze raz do zero-jedynkowej definicji wszystkich czterech jednoargumentowych spójników logicznych podanych w Wikipedii:
[link widoczny dla zalogowanych]
Pisze tu jak wół że:
Spójnik funkcji tożsamościowej (w algebrze Kubusia funkcji transmisji) to rzadko używany spójnik asercji (funkcja tożsamościowa)

Jak widzimy wyżej, w teorii zdarzeń spójnik transmisji (funkcja tożsamościowa w logice ziemian) jest w języku potocznym każdego człowieka zdecydowanie najczęściej używanym spójnikiem logicznym.

Dowód:
Spójnik transmisji w języku potocznym (funkcja tożsamościowa w logice ziemian) jest nierozerwalnie związany z najprostszą obietnicą bezwarunkową typu:
W przyszłości (np. jutro) coś tam zrobimy
Przykłady:
Jutro pójdziemy do kina
Jutro pójdziemy do lasu
Jutro idę na egzamin
etc.

Kliknijmy w Wikipedii co się kryje pod pojęciem „funkcji tożsamościowej”?
Mamy definicję jak na początku niniejszego wpisu:
http://www.sfinia.fora.pl/posting.php?mode=editpost&p=706875
@Wikipedia
Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność) – funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”.

O co chodzi w tej definicji wyjaśniliśmy sobie zarówno na gruncie teorii zdarzeń (wyżej), jak i na gruncie teorii zbiorów (początek rozdziału)


Ostatnio zmieniony przez rafal3006 dnia Pią 12:56, 10 Maj 2024, w całości zmieniany 3 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 19:15, 07 Maj 2024    Temat postu:

Algebra Kubusia - matematyka języka potocznego
29.0 Krótka historia rozszyfrowywania algebry Kubusia

Spis treści
29.0 Krótka historia rozszyfrowywania algebry Kubusia 1
29.1 Jak to się zaczęło? 2
29.1.1 Początki – rok 2006 2
29.2 Irbisol – odwieczny wróg algebry Kubusia 3
29.3 Podziękowanie dla Irbisola 4


29.0 Krótka historia rozszyfrowywania algebry Kubusia

Fundamentem wszelkich logik matematycznych jest algebra Boole’a z jej rachunkiem zero-jedynkowym. Algebra Boole’a nie zajmuje się związkiem praw logiki matematycznej na jej gruncie wyprowadzonych z otaczającym nas światem rzeczywistym - tym zajmują się beznadziejnie głupie inne ziemskie logiki: KRZ, modalna, intuicjonistyczna, relewantna etc.

Dlaczego beznadziejnie głupie?
Beznadziejnie głupie bo ich związek z otaczającym nas światem jest na poziomie zera, co widać niżej.
Klasyczny Rachunek Zdań dostępny jest w każdym podręczniku matematyki do I klasy LO, dlatego w całej algebrze Kubusia będziemy go używali jako dyżurnego „chłopca do bicia”.

Dowód iż KRZ to gwałt na rozumku każdego 5-cio latka to przykładowe zdania tu prawdziwe:
1: Jeśli 2+2=5 to jestem papieżem
2: Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
3: Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.

Dowód na serio prawdziwości zdania 1 znajdziemy tu:
[link widoczny dla zalogowanych]
Dowód na serio prawdziwości zdania 2 znajdziemy w podręczniku matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Komentarz do zdania 3 znajdziemy w Delcie'2013:
[link widoczny dla zalogowanych]

Geneza rozszyfrowania algebry Kubusia:

1
"Wszyscy wiedzą, że czegoś nie da się zrobić, aż znajdzie się taki jeden, który nie wie, że się nie da, i on to robi."
Albert Einstein
2.
"Historia wynalazków naukowych i technicznych uczy nas, że rasa ludzka uboga jest w niezależną myśl twórczą i wyobraźnię... człowiek musi niejako dosłownie potknąć się o rzecz samą, aby mu zakwitła Idea."
Albert Einstein
3.
"Jedyną pewną metodą unikania porażek jest nie mieć żadnych, nowych pomysłów."
Albert Einstein

Ad.1
Dopiero 26 lat po ukończeniu elektroniki na Politechnice Warszawskiej (rok 1980) po raz pierwszy w życiu usłyszałem termin Klasyczny Rachunek Zdań, tak więc z definicji nie wiedziałem, że u ziemskich matematyków KRZ jest nie do obalenia.
Ad.2
Moje potknięcie o Klasyczny Rachunek Zdań to wyjaśnienia Wuja Zbója, że ateiści mogą do tego samego nieba co wierzący na mocy definicji implikacji która w technice jest idiotyzmem bo opisuje "wolną wolę" istot żywych. Świat martwy z definicji "wolnej woli" nie ma i nigdy mieć nie może.
Puszka Pandory prowadząca do zagłady wszelkich ziemskich logik matematycznych została otwarta.
Ad.3
Mój nowy pomysł po bliższym zapoznaniu się z Klasycznym Rachunkiem Zdań to wniosek, iż KRZ to gwałt na rozumku każdego 5-cio latka zatem musi być fałszem, co zostało udowodnione na pierwszych stronach algebry Kubusia w postaci prawa Grzechotnika (pkt. 1.5.4 i 1.7)

29.1 Jak to się zaczęło?

Wszystko zaczęło się na forum wiara.pl gdzie Wuj Zbój zaczął mi udowadniać w rachunku zero-jedynkowym, że ateiści mogą do tego samego nieba co wierzący.
W swoim dowodzie użył nieznanej mi wówczas zero-jedynkowej definicji implikacji, mimo że z racji zawodu byłem ekspertem bramek logicznych (elektronika na Politechnice Warszawskiej).
Po krótkiej dyskusji Wuj zaprosił mnie na swoje forum śfinia.

ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury.

Link do forum filozoficznego sfinia z jego niezwykłym regulaminem pozwalającym głosić dowolne herezje bez obawy o bana - tylko i wyłącznie dzięki temu algebra Kubusia została rozszyfrowana:
http://www.sfinia.fora.pl/zaprzyjaznione-portale,60/
Na forum śfinia mamy dostęp do pełnej, 18 letniej historii rozszyfrowywania algebry Kubusia.

Startowa dyskusja w temacie logiki matematycznej jest w tym linku:
http://www.sfinia.fora.pl/forum-kubusia,12/definicja-implikacji-wedlug-rafala3006-p-wieczorka,685.html#14369

Tu algebra Kubusia była niemowlęciem jeszcze, musiało minąć kolejnych 18 lat zanim została w 100% rozszyfrowana.

Efekt końcowy na dzień 2024-02-07 w wersji pdf mamy tu:
[link widoczny dla zalogowanych]
Kod:
https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0


29.1.1 Początki – rok 2006

Kluczowym przełomem w dyskusji na temat logiki matematycznej było odkrycie przeze mnie w rachunku zero-jedynkowym praw Kubusia.

Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q

Gdzie:
=> - definicja obietnicy
~> - definicja groźby
… tak to się wtedy nazywało, bo te znaczki pasowały mi do obsługi obietnic i gróźb w świecie żywym

Nazwa obecna:
=> - warunek wystarczający
~> - warunek konieczny

Definicja warunku wystarczającego =>:
p=>q – zajęcie p jest (=1) wystarczające => dla zajścia q
Definicja warunku koniecznego ~>:
p~>q – zajście p jest (=1) konieczne ~> dla zajścia q

Wuj Zbój potwierdził matematyczną poprawność praw Kubusia.
Tu jest ten historyczny moment:
http://www.sfinia.fora.pl/forum-kubusia,12/implikacja-na-miare-xxi-wieku,1483.html#28815
Wysłany: Pon 15:02, 01 Sty 2007
wujzboj napisał:
rafal3006 napisał:
p~>q = ~p=>~q
p=>q = ~p~>~q
OK.

Ze zdziwieniem stwierdziłem, że praw Kubusia nie mogę znaleźć w Internecie, co było dla mnie wielkim zaskoczeniem.

Kolejnym przełomem w odkrywaniu algebry Kubusia było okrycie definicji brakującego tu znaczka zdarzenia możliwego ~~>
Definicja zdarzenia możliwego ~~>:
p~~>q =1 – możliwe jest jednoczesne zajście zdarzeń ~~>: p i q

Pierwsza dyskusja z zawodowym logikiem Volrathem była dla mnie arcyciekawa bo doskonale znał teorię bramek logicznych i mieliśmy wspólny w tym temacie język.
Znaczenie tej dyskusji doceniłem dopiero 16 lat później, gdy wnioski Volratha z naszej dyskusji wykorzystałem w końcowej algebrze Kubusia (pkt. 22.0).

Kolejny zawodowy matematyk z którym dyskutowałem to Macjan, dyskusja była ciekawa bo Macjan zaakceptował znaczki => i ~> (wtedy jeszcze nie było znaczka ~~>).

Ostatnim kluczowym partnerem w dyskusji na temat algebry Kubusia był Fiklit, który na bieżąco wskazywał słabe punkty algebry Kubusia, dzięki czemu mogłem ją korygować. Wiedza prezentowana przez Fiklita, oraz jego 6-cio letnia cierpliwość w dyskusji ze mną wskazuje, iż być może jest znakomitym wykładowcą logiki matematycznej - stąd jego cierpliwość dla początkującego studenta.

29.2 Irbisol – odwieczny wróg algebry Kubusia

Oddzielnym tematem jest Irbisol, zaciekły wróg algebry Kubusia, od 15 lat za wszelką cenę pragnący ją zniszczyć.
Link do końcowego wątku dyskusji z Irbisolem:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-4650.html#777141

Dlaczego 15-letnia dyskusja z Irbisolem była dla mnie bezcenna?

Dzięki dyskusji z Irbisolem wędrowaliśmy po dziewiczych obszarach matematyki do których bez jego pomocy nigdy bym nie dotarł.

Wypunktuję dlaczego dyskusja z Irbisolem była dla mnie bezcenna:
1.
Irbisol nie jest matematykiem (jest absolwentem uczelni technicznej, jak ja) - to jest najważniejsza jego korzystna cecha na potrzeby naszej dyskusji
2.
Irbisol rozumie równania algebry Boole'a którymi się posługuję co znajduje potwierdzenie w dawnej naszej dyskusji
3.
Irbisol ślepo wierzy, że przy pomocy KRZ da się opisać logikę matematyczną, którą posługują się ludzie.
Innymi słowy:
KRZ jest dla niego bogiem (póki co) któremu nie jest w stanie się sprzeciwić

Cecha Nr.3 jest tu kluczowa, dzięki niej możliwe było starcie wszech czasów:
Algebra Kubusia vs Klasyczny Rachunek Zdań (w wersji Irbisola)

Podsumowując:
Z żadnym ziemski matematykiem nie miałbym szans na dyskusję w stylu Irbisola posługującego się jego prywatnym KRZ z KRZ matematyków mającym zero wspólnego.

Kluczowa różnica:
Irbisol ślepo wierzy w poniższą tożsamość:
Warunek wystarczający => = Implikacja rodem z KRZ =>

W świecie matematyków to jest oczywista brednia.
cnd

Uwaga:
Dzięki pseudo-tożsamości Irbisola mieliśmy wspólny punkt zaczepienia, bo definicję warunku wystarczającego => rozumieliśmy identycznie, od zawsze.
Przykładowo, Irbisol bez najmniejszych oporów zrozumiał, że równoważność Pitagorasa:
A1B3: TP<=>SK = (A: TP=>SK)*(B3: SK=>TP)=1*1=1
Definiuje tożsamość zbiorów TP=SK, o czym na dzień dzisiejszy, żaden ziemski matematyk nie ma najmniejszego pojęcia.

29.3 Podziękowanie dla Irbisola

W tym poście Irbisol był jedną nogą w klubie algebry Kubusia - niestety, w ostatniej chwili zdezerterował:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-4650.html#777141

Tuż po opublikowaniu powyższego postu zadzwonił do mnie czerwony telefon z pomocą którego mam bezpośrednią łączność z Kubusiem ze 100-milowego lasu, rzeczywistym autorem algebry Kubusia.
Kubuś prosił mnie, bym podziękował Irbisolowi za 15-letnią dyskusję argumentując, że nowa teoria matematyczna, jaką jest algebra Kubusia musiała mieć wroga nr. 1 w osobie Irbisola, by w ogóle móc zaistnieć, co niniejszym czynię

Dzięki Irbisolu za 15 letnią dyskusję – bez ciebie nie byłoby algebry Kubusia!

Tak w ogóle to nie mam pewności, czy wszelkimi naszymi poczynaniami nie sterował bezpośrednio Kubuś, ale to by oznaczało, że nasza "wolna wola" jest picem, tak więc lepiej zrezygnować z takiego "filozofowania".

https://www.youtube.com/watch?v=Fz8J-WXXjaA
Sprzedawcy Marzeń - Myslovitz napisał:

Płyta : Korova Milky Bar.

Tekst :

Jaki piękny jest ten świat, tylko czarne, białe
To jest proste, widzę - wiem
Już tu siedzę jakiś czas, lubię dużo wiedzieć
I nie wzrusza mnie już nic

Ty widzisz we mnie coś, nie ma ideału
A miłość ślepa jest
I chyba nie wiesz, że telewizja kłamie
Nie wszystko możesz mieć

Nie mogę zrobić nic, sterowany jestem wciąż
Nie musisz starać się, przecież jesteś też jak ja

Powiedzieć coś bym chciał, mam pustkę w głowie
Zgubiłem znowu się
I nie chce mi się nic, jestem już zmęczony
To nie był dobry dzień

Nie mogę zrobić nic, sterowany jestem wciąż
Nie musisz starać się, przecież jesteś też jak ja
Nie mogę zrobić nic, sterowany jestem wciąż
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32997
Przeczytał: 25 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 22:02, 15 Maj 2024    Temat postu:

2.
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin