Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - Kompendium

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 20113
Przeczytał: 18 tematów

Pomógł: 138 razy
Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 14:41, 07 Sie 2016    Temat postu: Algebra Kubusia - Kompendium

Algebra Kubusia - Kompendium

Część I

Autorzy:
Kubuś i przyjaciele

Kim jest Kubuś?
Kubuś to wirtualny Internetowy Miś, teleportowany do ziemskiego Internetu przez zaprzyjaźnioną cywilizację z innego Wszechświata.

Gdzie powstawała algebra Kubusia?
Forum śfinia.fora.pl to hlefik Kubusia, zawierający pełną historię powstawania AK:
http://www.sfinia.fora.pl/forum-kubusia,60/
Forum ateista.pl:
[link widoczny dla zalogowanych]
Forum yrizzona.freeforums.org:
[link widoczny dla zalogowanych]
Forum matematyka.pl:
[link widoczny dla zalogowanych]

Algebra Kubusia to końcowy efekt dziesięcioletniej dyskusji na forach sfinia.fora.pl, ateista.pl, yrizona.freeforums.org i matematyka.pl. Warunkiem koniecznym powstania algebry Kubusia było wolne od wszelkiej cenzury forum śfinia oraz kluczowe dyskusje z Rafalem3006, Wujem Zbójem i Fiklitem. Śfinia to hlefik Kubusia z zapisem pełnej historii narodzin algebry Kubusia.

Dziękuję wszystkim, którzy dyskutując z Kubusiem przyczynili się do powstania algebry Kubusia:
Rafał3006(medium), Wuj Zbój, Miki, Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors, Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Lucek, Andy72 i inni.
Kubuś

Wstęp:
Algebra Kubusia to największe wydarzenie w historii ludzkości.
Dlaczego?
Algebra Kubusia to logika matematyczna pod którą podlega cały nasz Wszechświat, żywy i martwy (z matematyką włącznie). W znanym nam Wszechświecie martwym to mniej więcej tak, jakby komputer zrozumiał logikę matematyczną, dzięki której działa.
Wszystkie definicje w algebrze Kubusia są sprzeczne z aktualną logiką matematyczną Ziemian. Matematycy proszeni są zatem o skasowanie (na czas czytania) wszystkiego, czego uczono ich w szkole.

Spis treści
1.0 Notacja 2
2.0 Kompendium algebry Kubusia 4
2.1 Spójniki „lub”(+) i „i”(*) 4
2.2 Operatory OR(|+) i AND(|*) 5
2.3 Prawa Prosiaczka 7
2.4 Spójniki implikacyjne ~~>, =>, ~> 8
2.5 Prawa Kubusia 9
2.6 Prawo Kobry 11
2.7 Wspólna dziedzina w zdaniach warunkowych 11
2.8 Operatory implikacyjne |=>, |~>, |~~> 13
3.0 Operatory implikacyjne w zbiorach 17
3.1 Operator implikacji prostej p|=>q 17
3.2 Operator implikacji odwrotnej p|~>q 22
8.3 Operator równoważności p<=>q 26
8.4 Operator chaosu p|~~>q 31
4.0 Obietnice i groźby 32
4.1 Klasyka obietnicy 33
4.2 Klasyka groźby 34



1.0 Notacja

1 = prawda
0 = fałsz

Operatory OR(|+) i AND(|*)
(~) - symbol negacji, przeczenia (~p=NIE p)
(+) - spójnik „lub”(+)
(*) - spójnik „i”(*)
(|+) - operator OR(|+)
(|*) - operator AND(|*)

Operatory implikacyjne:
=> - warunek wystarczający
~> - warunek konieczny
~~> - kwantyfikator mały
|=> - operator implikacji prostej
|~> - operator implikacji odwrotnej
|~~> - operator chaosu
<=> - równoważność

1 = prawda
0 = fałsz

Spójniki „lub”(+) i „i”(*) z naturalnej logiki człowieka:
(+) - spójnik „lub”(+)
(*) - spójnik „i”(*)

Definicje operatorów OR(|+) i AND(|*) w spójnikach „lub”(+) i „i”(*):

(|+) - operator OR
Y=p+q
~Y=~p*~q

(|*) - operator AND
Y=p*q
~Y=~p+~q

Definicje spójników implikacyjnych ~~>, => i ~>:
Niech będą dane dwa zbiory lub zdarzenia p i q operujące we wspólnej dziedzinie

1.
p~~>q = p*q - kwantyfikator mały ~~>

Zdarzenia:
Możliwe jest jednoczesne zajście zdarzeń p i q
Zbiory:
Istnieje wspólny element zbiorów p i q

2.
p=>q - warunek wystarczający =>

Zdarzenia:
Wymuszam dowolne p i musi pojawić się q
Zbiory:
Zbiór p jest podzbiorem => zbioru q

3.
p~>q - warunek konieczny ~>

Zdarzenia:
Zabieram wszystkie p i znika mi q
Zbiory:
Zbiór p jest nadzbiorem ~> zbioru q

Matematycznie zachodzi:
p=>q ## p~>q ## p~~>q
gdzie:
## - różne na mocy definicji

Prawa Kubusia wiążące warunek wystarczający => z warunkiem koniecznym ~>:
I prawo Kubusia:
Warunek konieczny ~> w logice ujemnej (bo ~q) jest tożsamy z warunkiem wystarczającym => w logice dodatniej (bo q)
~p~>~q = p=>q
II prawo Kubusia:
Warunek wystarczający w logice ujemnej (bo ~q) jest tożsamy w warunkiem koniecznym ~> w logice dodatniej (bo q)
~p=>~q = p~>q

Interpretacja praw Kubusia:
Zdanie prawdziwe po dowolnej stronie prawa Kubusia wymusza zdanie prawdziwe po drugiej stronie.
Zdanie fałszywe po dowolnej stronie prawa Kubusia wymusza zdanie fałszywe po drugiej stronie

Definicje operatorów implikacyjnych w spójnikach implikacyjnych:

O przynależności zdania warunkowego „Jeśli p to q” ze spełnionym warunkiem wystarczającym p=>q lub koniecznym p~>q do konkretnego operatora decyduje zdanie wypowiedziane w logice dodatniej (bo q). Jeśli ktokolwiek wypowie jako pierwsze zdanie „Jeśli p to q” w logice ujemnej (~p=>~q lub ~p~>~q) to musimy to zdanie sprowadzić do logiki dodatniej korzystając z praw Kubusia, bowiem poniższe definicje operują wyłącznie na zdaniach warunkowych „Jeśli p to q” w logice dodatniej, z niezanegowanym następnikiem q.

p|=>q - operator implikacji prostej
p=>q=1
p~>q=0
p~~>q=1
Definicja:
p|=>q=(p=>q)*~(p~>q) = 1*~(0) =1*1 =1

p|~>q - operator implikacji odwrotnej
p=>q =0
p~>q =1
p~~>q =1
Definicja:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) =1*1 =1

p<=>q - operator równoważności
p=>q =1
p~>q =1
p~~>q =1
Definicja:
p<=>q = (p=>q)*(p~>q) =1*1 =1

p|~~>q - operator chaosu
p=>q =0
p~>q =0
p~~>q =1
Definicja:
p|~~>q = (p~~>q)*~(p=>q)*~(p~>q) = 1*~(0)*~(0) = 1*1*1 =1

Matematycznie zachodzi:
p|=>q ## p|=>q ## p|~>q ## p|~~>q
gdzie:
## - różne na mocy definicji


2.0 Kompendium algebry Kubusia

1 = prawda
0 = fałsz

„~” - symbol przeczenia np. ~p (nie p)


2.1 Spójniki „lub”(+) i „i”(*)

Spójniki „i” i „lub”:
1.
„*” - spójnik „i”(*) z naturalnej logiki człowieka
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
2.
„+” - spójnik „lub”(+) z naturalnej logiki człowieka
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1


2.2 Operatory OR(|+) i AND(|*)

1.
„|+” - operatora OR(|+) opisany jest układem równań logicznych w spójnikach „lub”(+) i „i”(*)

A.
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
… a kiedy zajdzie ~Y?
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
B.
~Y=~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1

Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y):
Logika dodatnia (bo Y) to zanegowana logika ujemna (bo ~Y
Y = ~(~Y)
Podstawiając A i B mamy prawo De Morgana w logice dodatniej (bo Y)
Y = p+q = ~(~p*~q)

Związek logiki ujemnej (bo ~Y) i dodatniej (bo Y):
Logika ujemna (bo ~Y) to zanegowana logika dodatnie (bo Y)
~Y = ~(Y)
Podstawiając A i B mamy prawo De Morgana w logice ujemnej (bo ~Y)
~Y = ~p*~q = ~(p+q)
Uwaga:
Przejście do logiki przeciwnej jest odpowiednikiem wzorów skróconego mnożenia znanych z matematyki klasycznej.
Zapis tożsamy takiego przejścia to po prostu negacja dwustronna tożsamości logicznej:
Y=p+q
~Y = ~(p+q) = ~p*~q - na mocy prawa De Morgana

Pani w przedszkolu:
A.
Jutro pójdziemy do kina lub do teatru
Y=K+T
co matematycznie oznacza:
Y=1 <=> K=1 lub T=1
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub do teatru (T=1)

… a kiedy pani skłamie?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
~Y=~K*~T
B.
Prawdą jest (=1), że pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
~Y=~K*~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 i ~T=1

Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani skłamie

2.
„|*” - operator AND(|*) opisany jest układem równań logicznych w spójnikach „lub”(+) i „i”(*)

A.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
… a kiedy zajdzie ~Y?
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
B.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1

Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y):
Logika dodatnia (bo Y) to zanegowana logika ujemna (bo ~Y
Y = ~(~Y)
Podstawiając A i B mamy prawo De Morgana w logice dodatniej (bo Y)
Y = p*q = ~(~p+~q)

Związek logiki ujemnej (bo ~Y) i dodatniej (bo Y)
Logika ujemna (bo ~Y) to zanegowana logika dodatnie (bo Y)
~Y = ~(Y)
Podstawiając A i B mamy prawo De Morgana w logice ujemnej (bo ~Y)
~Y = ~p+~q = ~(p*q)

Pani w przedszkolu:
A.
Jutro pójdziemy do kina i do teatru
Y=K*T
co matematycznie oznacza:
Y=1 <=> K=1 i T=1
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) i do teatru (T=1)

… a kiedy pani skłamie?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
~Y=~K+~T
B.
Prawdą jest (=1), że pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) lub nie pójdziemy do teatru (~T=1)
~Y=~K+~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 lub ~T=1

Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani skłamie

2.3 Prawa Prosiaczka

I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo p) jest tożsama z fałszem (=0) w logice ujemnej (bo ~p)
(p=1) = (~p=0)
II Prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)

Prawa Prosiaczka doskonale znają w praktyce wszyscy ludzie na ziemi, od 3-latka poczynając na prof. matematyki kończąc.

Tata i synek Jaś (lat 3) na spacerze w ZOO

Jaś pokazując paluszkiem słonia mówi:
A.
Popatrz tata, to jest słoń!
S=1
Matematycznie:
Prawdą jest (=1) że to jest słoń (S)

Tata:
… a może to nie jest słoń?
Jaś:
B.
Fałszem jest (=0) że to nie jest słoń (~S)
~S=0

Zdania A i B są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
I prawo Prosiaczka:
A: (S=1) = B: (~S=0)

Jaś pokazuje paluszkiem kozę i mówi:
C.
Popatrz tata, to nie jest słoń
~S=1
Matematycznie:
Prawdą jest (=1), że to nie jest słoń

Tata:
… a może to jednak słoń?
Jaś:
D.
Fałszem jest (=0) że to jest słoń
S=0
Zdania C i D są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
II prawo Prosiaczka
C: (~S=1) = D: (S=0)


2.4 Spójniki implikacyjne ~~>, =>, ~>

Definicje spójników implikacyjnych ~~>, => i ~>:
Niech będą dane dwa zbiory lub zdarzenia p i q operujące we wspólnej dziedzinie

1.
p~~>q = p*q - kwantyfikator mały ~~>

Zdarzenia:
Możliwe jest jednoczesne zajście zdarzeń p i q.
Zbiory:
Istnieje wspólny element zbiorów p i q

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 2
P8~~>P2=P8*P2 =1 bo 8
Zdanie A pod kwantyfikatorem małym prawdziwe, bo istnieje wspólny element zbiorów P8=[8,16,24..] i P2=[2,4,6,8..]. Wystarczy pokazać jeden wspólny element zbiorów P8 i P2 i już zdanie A jest prawdziwe, dalsze działania są nieistotne.
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 =0
Zdanie B pod kwantyfikatorem małym ~~> jest fałszywe bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.

2.
p=>q - warunek wystarczający =>

Zdarzenia:
Wymuszam dowolne p i musi pojawić się q
Zbiory:
Zbiór p jest podzbiorem => zbioru q

Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada (P=1), są chmury (CH=1)
Wymuszam stan „pada” (P=1) i na 100% muszą być „chmury” (CH=1)
B.
Jeśli jutro będzie pochmurno to na pewno => będzie padać
CH=>P =0
Zdanie fałszywe bo wymuszam „chmury” i wcale nie musi „padać”

3.
p~>q - warunek konieczny ~>

Zdarzenia:
Zabieram wszystkie p i znika mi q
Zbiory:
Zbiór p jest nadzbiorem ~> zbioru q

Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Definicja warunku koniecznego ~> spełniona bo zabieram „chmury” wykluczając „padanie”.
Chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na pewno => nie pada (~P=1)
W sposób naturalny odkryliśmy tu prawo Kubusia wiążące warunek konieczny ~> z warunkiem wystarczającym =>:
CH~>P = ~CH=>~P
co matematycznie oznacza:
(CH=1)~>(P=1) = (~CH=1) => (~P=1)

Prawo Kubusia w zapisie formalnym:
p~>q = ~p=>~q
co matematycznie oznacza:
(p=1)~>(q=1) = (~p=1) => (~q=1)

Znaczenie prawa Kubusia (tożsamości logicznej <=>):
CH~>P <=> ~CH=>~P
Prawdziwość dowolnej strony tożsamości logicznej <=> wymusza prawdziwość drugiej strony.
Fałszywość dowolnej strony tożsamości logicznej <=> wymusza fałszywość drugiej strony

Matematycznie zachodzi:
Tożsamość logiczna <=> = Tożsamość klasyczna „=”
Stąd znaczki <=> i „=” można używać zamiennie i zwykle tak się robi dla poprawienia czytelności zapisu.


2.5 Prawa Kubusia

Prawa Kubusia wiążą warunek wystarczający => z warunkiem koniecznym ~>:
I prawo Kubusia:
Warunek wystarczający => w logice dodatniej (bo p) jest tożsamy z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q
II prawo Kubusia:
Warunek konieczny ~> w logice dodatniej (bo q) jest tożsamy z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q

Interpretacja praw Kubusia:
Zdanie prawdziwe po dowolnej stronie prawa Kubusia wymusza zdanie prawdziwe po drugiej stronie.
Zdanie fałszywe po dowolnej stronie prawa Kubusia wymusza zdanie fałszywe po drugiej stronie

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Dziedzina:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P8=[8,16,24..]
P2=[2,4,6,8..]
~P8=[LN-P8] =[1,2,3,4,5,6,7..9..]
~P2=[LN-P2] =[1,3,5,7,9..]
Prawo Kubusia:
P8=>P2 = ~P8~>~P2
Prawej strony tożsamości nie musimy sprawdzać, bo jest pewna na mocy prawa Kubusia.
Nie musimy, ale możemy.
C.
Jeśli liczba nie jest podzielna przez 8 to może ~> nie być podzielna przez 2
~P8~>~P2 =1
Definicja warunku koniecznego ~> spełniona bo zbiór ~P8=[1,2,3,4,5,6,7,..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
lub
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 2
~P8~~>P2 =1 bo 2
Definicja kwantyfikatora małego ~~> jest spełniona bo istnieje co najmniej jeden element wspólny zbiorów ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..]
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia:
D1: ~P8~>P2 = P8=>~P2

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdanie „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
p~~>q = p*q =1
Wystarczy pokazać jeden wspólny element zbiorów p i q by zdanie pod kwantyfikatorem małym ~~> było prawdziwe

Sprawdzamy prawą stronę tożsamości D1 prawem Kobry:
P8~~>~P2 = P8*~P2 =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiór P8=[8,16,24..] jest rozłączny ze zbiorem ~P2=[1,3,5,7,9..]
Wniosek:
W zdaniu D na 100% nie zachodzi warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy kwantyfikatora małego ~~>.

Prawa Kubusia w obsłudze zdań fałszywych:
A.
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Prawo Kubusia:
P2=>P8 = ~P2~>~P8
Lewa strona tożsamości Kubusia jest fałszem, zatem prawa strona musi być fałszem.
Nie musimy tego dowodzić, ale możemy.
C.
Jeśli liczba nie jest podzielna przez 2 to może nie być podzielna przez 8
~P2~>~P8 =0
Definicja warunku koniecznego ~> nie jest tu spełniona bo zbiór ~P2=[1,3,5,7,9..] nie jest nadzbiorem zbioru ~P8=[1,2,3,4,5,6,7..9..]

Wniosek:
P2=>P8 = ~P2~>~P8 =0
Prawa Kubusia działają fantastycznie!


2.6 Prawo Kobry

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
p~~>q = p*q =1
Wystarczy pokazać jeden wspólny element zbiorów p i q by zdanie pod kwantyfikatorem małym ~~> było prawdziwe.

Przykład zdania niespełniającego prawa Kobry:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 =0
Kwantyfikator mały ~~> nie jest tu spełniony, bo zbiory P8=[8,16,24..] i P2=[2,4,6,8..] są rozłączne.

Przykład zdania spełniającego prawo Kobry:
A1.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Warunek wystarczający => spełniony bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Oczywistym jest że warunek wystarczający A1 spełnia prawo Kobry:
A2.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 2
P8~~>P2 = P8*P2 =1 bo 8
Dla udowodnienia prawdziwości zdania A2 pod kwantyfikatorem małym ~~> wystarczy pokazać jeden element wspólny zbiorów P8=[8,16,24..] i P2=[2,4,6,8..]


2.7 Wspólna dziedzina w zdaniach warunkowych

Przypomnijmy sobie definicje spójników implikacyjnych.

Definicje spójników implikacyjnych ~~>, => i ~>:
Niech będą dane dwa zbiory lub zdarzenia p i q operujące we wspólnej dziedzinie

1.
p~~>q = p*q - kwantyfikator mały ~~>

Zdarzenia:
Możliwe jest jednoczesne zajście zdarzeń p i q
Zbiory:
Istnieje wspólny element zbiorów p i q

2.
p=>q - warunek wystarczający =>

Zdarzenia:
Wymuszam dowolne p i musi pojawić się q
Zbiory:
Zbiór p jest podzbiorem => zbioru q

3.
p~>q - warunek konieczny ~>

Zdarzenia:
Zabieram wszystkie p i znika mi q
Zbiory:
Zbiór p jest nadzbiorem ~> zbioru q

O co chodzi w pierwszym zdaniu?

Definicje spójników implikacyjnych ~~>, => i ~>:
Niech będą dane dwa zbiory lub zdarzenia p i q operujące na wspólnej dziedzinie

„We wspólnej dziedzinie” chodzi o to, że dziedziną poprzednika nie może być mydło, a dziedziną następnika powidło.
Przykład takiego bełkotu.
B1.
Jeśli trójkąt jest prostokątny to kwadrat ma wszystkie kąty proste i boki równe
TP=>KWKPBR

Tu dziedziną poprzednika jest:
ZWT - zbiór wszystkich trójkątów
… a dziedziną następnika jest:
ZWC - zbiór wszystkich czworokątów

Te dziedziny są rozłączne, zatem zdanie B1 jest też fałszywe na mocy prawa Kobry.

Dla naszego zdania B1 mamy:
Jeśli ZWT to ZWC
ZWT~~>ZWC = ZWT*ZWC =0
bo te dziedziny są rozłączne.

Wniosek:
Skoro dziedzina poprzednika jest rozłączna z dziedziną następnika to jest oczywistym, że poprzednik nie może mieć nic wspólnego z następnikiem, zatem zdanie B1 jest matematycznie fałszywe.
Czyli:
Dowolny trójkąt nie ma nic wspólnego z dowolnym czworokątem


2.8 Operatory implikacyjne |=>, |~>, |~~>

Definicje spójników implikacyjnych ~~>, => i ~>:
Niech będą dane dwa zbiory lub zdarzenia p i q operujące we wspólnej dziedzinie

1.
p~~>q = p*q - kwantyfikator mały ~~>

Zdarzenia:
Możliwe jest jednoczesne zajście zdarzeń p i q
Zbiory:
Istnieje wspólny element zbiorów p i q

2.
p=>q - warunek wystarczający =>

Zdarzenia:
Wymuszam dowolne p i musi pojawić się q
Zbiory:
Zbiór p jest podzbiorem => zbioru q

3.
p~>q - warunek konieczny ~>

Zdarzenia:
Zabieram wszystkie p i znika mi q
Zbiory:
Zbiór p jest nadzbiorem ~> zbioru q

Matematycznie zachodzi:
p=>q ## p~>q ## p~~>q
gdzie:
## - różne na mocy definicji

Prawa Kubusia wiążące warunek wystarczający => z warunkiem koniecznym ~>:
I prawo Kubusia:
Warunek konieczny ~> w logice ujemnej (bo ~q) jest tożsamy z warunkiem wystarczającym => w logice dodatniej (bo q)
~p~>~q = p=>q
II prawo Kubusia:
Warunek wystarczający w logice ujemnej (bo ~q) jest tożsamy w warunkiem koniecznym ~> w logice dodatniej (bo q)
~p=>~q = p~>q

O przynależności zdania warunkowego „Jeśli p to q” ze spełnionym warunkiem wystarczającym p=>q lub koniecznym p~>q do konkretnego operatora decyduje zdanie wypowiedziane w logice dodatniej (bo q). Jeśli ktokolwiek wypowie jako pierwsze zdanie „Jeśli p to q” w logice ujemnej (~p=>~q lub ~p~>~q) to musimy to zdanie sprowadzić do logiki dodatniej korzystając z prawa Kubusia, bowiem poniższe definicje operują wyłącznie na zdaniach warunkowych „Jeśli p to q” w logice dodatniej, z niezanegowanym następnikiem q.

Definicje operatorów implikacyjnych |=>, |~>, |~~> w spójnikach implikacyjnych =>, ~>, ~~>:

p|=>q - operator implikacji prostej
p=>q=1
p~>q=0
p~~>q=1
Definicja:
p|=>q=(p=>q)*~(p~>q) = 1*~(0) =1*1 =1

p|~>q - operator implikacji odwrotnej
p=>q =0
p~>q =1
p~~>q =1
Definicja:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) =1*1 =1

p<=>q - operator równoważności
p=>q =1
p~>q =1
p~~>q =1
Definicja:
p<=>q = (p=>q)*(p~>q) =1*1 =1

p|~~>q - operator chaosu
p=>q =0
p~>q =0
p~~>q =1
Definicja:
p|~~>q = (p~~>q)*~(p=>q)*~(p~>q) = 1*~(0)*~(0) = 1*1*1 =1

Matematycznie zachodzi:
p|=>q ## p|=>q ## p|~>q ## p|~~>q
gdzie:
## - różne na mocy definicji

Przykład 1.
Zbadaj w skład jakiego operatora logicznego wchodzi twierdzenie:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem zbioru P2=[2,4,6,8..]
Badamy warunek konieczny ~> między tymi samymi punktami:
B.
Jeśli liczba jest podzielna przez 8 to może ~> być podzielna przez 2
P8~>P2 =0
Warunek konieczny ~> nie jest spełniony bo zbiór P8=[8,16,24..] nie jest nadzbiorem zbioru P2=[2,4,6,8..]

Definicja operatora implikacji prostej p|=>q:
p=>q =1
p~>q =0
p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1

Wniosek:
Warunek wystarczający A wchodzi w skład operatora implikacji prostej p|=>q o definicji:
P8=>P2 =1
P8~>P2 =0
P8|=>P2 = (P8=>P2)*~(P8~>P2) = 1*~(0) = 1*1 =1
p|=>q = (p=>q)*~(p~>q)

Przykład 2.
Zbadaj w skład jakiego operatora logicznego wchodzi twierdzenie matematyczne:
A.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8 =1
Zauważmy, że wszystkie operatory logiczne mamy zdefiniowane dla zdań warunkowych „Jeśli p to q” w logice dodatniej (bo q).
Dla naszego zdania A musimy skorzystać z prawa Kubusia, aby uzyskać zdanie tożsame w logice dodatniej (bez zanegowanego następnika).

Prawo Kubusia:
~p=>~q = p~>q
Nasz przykład:
~P2=>~P8 = P2~>P8

Stąd zdanie tożsame do A.
B.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Badamy warunek wystarczający => zachodzący między punktami P2 i P8:
C.
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8 =0
Warunek wystarczający => nie jest spełniony bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]

Definicja operatora implikacji odwrotnej p|~>q:
p~>q =1
p=>q =0
Definicja:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) = 1*1 =1

Wniosek:
Warunek konieczny B: P2~>P8 (wraz z tożsamym zdaniem A:~P2=>~P8) jest częścią operatora implikacji odwrotnej P2|~>P8 o definicji:
P2~>P8 =1
P2=>P8 =0
P2|~>P8 = (P2~>P8)*~(P2=>P8) = 1*~(0) = 1*1 =1

Przykład 3.
Zbadaj w skład jakiego operatora logicznego wchodzi twierdzenie Pitagorasa.
TP.
Jeśli trójkąt jest prostokątny to na pewno => zachodzi suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => spełniona bo zbiór TP jest podzbiorem => zbioru SK
Oczywistość z powodu tożsamości zbiorów TP=SK
TP~>SK =1
Definicja warunku koniecznego ~> spełniona bo zbiór TP jest nadzbiorem ~> zbioru SK
Oczywistość z powodu tożsamości zbiorów TP=SK

Definicja równoważności p<=>q:
p<=>q = (p=>q)*(p~>q) = 1*1 =1

Stąd mamy odpowiedź:
Twierdzenie Pitagorasa jest częścią operatora równoważności:
TP=>SK =1
TP~>SK =1
TP<=>SK = (TP=>SK)*(TP~>SK) = 1*1 =1

Przykład 4.
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie pod kwantyfikatorem małym ~~>:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 =1 bo 24
Definicja kwantyfikatora małego ~~> spełniona bo zbiór P8=[8,16,24..] ma co najmniej jeden element wspólny ze zbiorem P3=[3,6,9..24..]
Sprawdzamy warunek wystarczający => między punktami P8 i P3:
P8=>P3 =0
Warunek wystarczający => nie jest spełniony bo zbiór P8=[8,16,24..] nie jest podzbiorem => zbioru P3=[3,6,9..24..]
Sprawdzamy warunek konieczny ~> między punktami P8 i P3:
P8~>P3 =0
Warunek konieczny ~> nie jest spełniony bo zbiór P8=[8,16,24 ..] nie jest nadzbiorem ~> zbioru P3=[3,6,9..24..]

Definicja operatora chaosu p|~~>q:
p=>q =0
p~>q =0
p~~>q=1
Definicja:
p|~~>q = (p~~>q)*~(p=>q)*~(p~>q) = 1*~(0)*~(0) = 1*1*1 =1

Wniosek:
Nasze zdanie A: P8~~>P3 wchodzi w skład definicji operatora chaosu P8|~~>P3:
P8|~~>P3 = (P8~~>P3)*~(P8=>P3)*~(P8~>P3) = 1*~(0)*~(0) = 1*1*1 =1

Podsumowując nasze cztery przykłady mamy:
1: P8|=>P2 ## 2: P2|~>P8 ## 3: TP<=>SK ## 4: P8|~~>P3
gdzie:
## - różne na mocy definicji

Najbardziej interesujące są tu dwa pierwsze człony:
1: P8|=>P2 = (P8=>P2)*~(P8~>P2) ## 2: P2|~>P8 = (P2~>P8)*~(P2=>P8)

Prawa Kubusia zachodzące zawsze i wszędzie:
p=>q = ~p~>~q
p~>q = ~p=>~q

Stąd mamy:
1: P8|=>P2 = (P8=>P2 = ~P8~>~P2)*~(P8~>P2) ## 2: P2|~>P8 = (P2~>P8 = ~P2=>~P8)*~(P2=>P8)
gdzie:
## - różne na mocy definicji

Stąd mamy:
P8=>P2 = ~P8~>~P2 ## P2~>P8 = ~P2=>~P8
gdzie:
## - różne na mocy definicji

Stąd mamy:
P8=>P2 ## ~P2=>~P8
gdzie:
## - różne na mocy definicji

Wniosek:
Znane Ziemianom prawo kontrapozycji w tej postaci:
P8=>P2 = ~P2=>~P8
jest fałszywe w implikacji.

Znane Ziemianom prawo kontrapozycji obowiązuje wyłącznie w równoważności:
p=>q = ~q=>~p
Prosty dowód, na gruncie banalnej teorii zbiorów za chwilę


3.0 Operatory implikacyjne w zbiorach

3.1 Operator implikacji prostej p|=>q

Definicja operatora implikacji prostej |=> w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|=>q = (p=>q)*~[p=q]

Definicja tożsama implikacji prostej |=> w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q wtedy i tylko wtedy gdy między punktami p i q zachodzi:
p=>q =1
p~>q =0
Stąd mamy tożsamą definicję implikacji prostej |=> wyrażoną spójnikami implikacyjnymi => i ~>:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) =1*1 =1

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..].
Dodatkowo zbiory P8 i P2 nie są tożsame co oznacza, że musi być fałszywy warunek konieczny ~> między punktami P8 i P2.
B.
Jeśli liczba jest podzielna przez 8 to może ~> być podzielna przez 2
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Wniosek:
Warunek wystarczający A: P8=>P2 jest częścią operatora implikacji prostej |=>:
P8|=>P2 = (P8=>P2)*~[P8=P2] = 1*~(0) = 1*1 =1

Definicja operatora implikacji prostej |=> w zdarzeniach:
Zajście zdarzenia p jest warunkiem wystarczającym => dla zajścia zdarzenia q i nie jest tożsame ze zdarzeniem q, co matematycznie zapisujemy ~[p=q]
p|=>q = (p=>q)*~[p=q]
Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno
Wymuszam stan „pada” i na 100” pojawi się stan „chmury”
Dodatkowo pojęcia „pada” i „chmury” nie są tożsame bo nie zawsze gdy są chmury, pada.
Wniosek:
Warunek wystarczający A wchodzi w skład operatora implikacji prostej |=>:
P|=>CH = (P=>CH)*~[P=CH] = 1* ~(0) = 1*1 =1

Diagram implikacji prostej |=> w zbiorach:


Definicję symboliczną operatora implikacji prostej odczytujemy z diagramu:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q =1
Definicja warunku wystarczającego => spełniona bo zbiór p jest podzbiorem zbioru q
p=>q = [p*q=p] =1
Prawdziwość warunku wystarczającego A wymusza fałszywość kontrprzykładu B (i odwrotnie)
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiory p i ~q są rozłączne
… a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q = ~p~>~q
C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q = [~p*~q=~q] =1
Definicja warunku koniecznego ~> spełniona bo zbiór ~p jest nadzbiorem ~> zbioru ~q
lub
D.
Jeśli zajdzie ~p to może zajść q
~p~~>q = ~p*q =1
Definicja kwantyfikatora małego ~~> spełniona bo istnieje co najmniej jeden element wspólny zbiorów ~p i q
Warunek konieczny ~p~>q tu nie zachodzi bo prawo Kubusia:
~p~>q = p=>~q = p*~q =0 - bo zbiory p i ~q są rozłączne

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego A: p=>q nazywamy zdanie B: p~~>~q z zanegowanym następnikiem kodowane kwantyfikatorem małym ~~>
A: p=>q
B: p~~>~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu B: p~~>~q =0 wymusza prawdziwość warunku wystarczającego A: p=>q =1 (i odwrotnie)
Prawdziwość kontrprzykładu B: p~~>~q =1 wymusza fałszywość warunku wystarczającego A: p=>q =0 (i odwrotnie)

Zauważmy, że w implikacji prostej p|=>q po stronie p mamy gwarancję matematyczną =>:
A.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Natomiast po stronie ~p mamy najzwyklejsze „rzucanie monetą”:
Jeśli zajdzie ~p to może ~> zajść ~q (zdanie C) lub może ~~> zajść q (zdanie D)

Przykład:
A.
Jeśli jutro będzie padało (P=1) to na pewno => będzie pochmurno (CH=1)
P=>CH = P*CH =1
W zapisie formalnym:
p=>q = p*q =1
co matematycznie oznacza:
(p=1)=>(q=1) =1
Definicja warunku wystarczającego => spełniona bo wymuszam padanie i na pewno pojawią się chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Prawdziwość warunku wystarczającego A wymusza fałszywość kontrprzykładu B
B.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0 - sytuacja niemożliwa
W zapisie formalnym:
p~~>~q = p*~q =0
co matematycznie oznacza:
(p=1) ~~> (~q=1) =0
… a jeśli jutro nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
C.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH = ~P*~CH =1
W zapisie formalnym:
~p~>~q = ~p*~q =1
co matematycznie oznacza:
(~p=1)~>(~q=1) =1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno bo jak są opady to na pewno => są chmury
Zauważmy że prawo Kubusia samo nam tu wyskoczyło:
C: ~P~>~CH = A: P=>CH
lub
D.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1 - sytuacja możliwa
W zapisie formalnym:
~p~~>q = ~p*q =1
co matematycznie oznacza:
(~p=1)~~>(q=1) =1
Warunek konieczny ~> nie jest tu spełniony bo prawo Kubusia:
~P~>CH = P=>~CH = P*~CH =0
Prawa strona jest fałszem zatem w zdaniu D nie zachodzi warunek konieczny ~>.

Logika matematyczna człowieka ma tą piękną cechę, że przekłada się w stosunku 1:1 na zapisy formalne (zwyczajowo p, q i Y) niezależne od konkretnego zdania.
Dla naszego przykładu wystarczy podstawić:
p=P
q=CH
i lądujemy w zapisach formalnych.

Kodowanie zero-jedynkowe analizy symbolicznej implikacji prostej p|=>q:
Kod:

IP: Implikacja prosta p|=>q
                 Y ~Y  p  q ~p ~q  p=>q ~p~>~q |Co matematycznie oznacza
A: p=> q = p* q =1  0  1  1  0  0   =1    =1   |( p=1)=> ( q=1) =1
B: p~~>~q= p*~q =0  1  1  0  0  1   =0    =0   |( p=1)~~>(~q=1) =0
C:~p~>~q =~p*~q =1  0  0  0  1  1   =1    =1   |(~p=1)~> (~q=1) =1
D:~p~~>q =~p* q =1  0  0  1  1  0   =1    =1   |(~p=1)~~>( q=1) =1
   1   2   a  b  3  c  4  5  6  7    8     9      d        e     f
Y=(p|=>q)

Definicję symboliczną operatora implikacji prostej ABCD123 możemy zakodować z dwóch różnych punktów odniesienia.

1.
Kodowanie implikacji prostej p|=>q w spójnikach „lub”(+) i „i”(*)


Prawo Sowy:
Nagłówek kolumny wynikowej w dowolnej tabeli zero-jedynkowej wyrażonej spójnikami „lub”(+) i „i”(*) opisuje wyłącznie wynikowe jedynki w tej kolumnie.

Z tabeli symbolicznej ABCDab3c odczytujemy:
Tabela ABCDab3:
Y=(p|=>q) = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
Y=1 <=> A: (p=1 i q=1) lub C: (~p=1 i ~q=1) lub D: (~p=1 i q=1)
Tabela ABCDabc:
~Y=(~p|=>q) = B: p*~q
co matematycznie oznacza:
~Y=1 <=> B: (p=1 i ~q=1)

Operator logiczny implikacji prostej p|=>q to wszystkie cztery linie A, B, C, D a nie jedna, wybrana.
Implikacja prosta będzie prawdziwa p|=>q =1 gdy prawdziwe będzie jedno ze zdań A, C lub D
Inaczej implikacja prosta będzie fałszywa p|=>q =0 (zdanie B)

2.
Kodowanie implikacji prostej p|=>q wyrażonej spójnikami implikacyjnymi =>, ~>, ~~>


Prawo Puchacza:
Nagłówek kolumny wynikowej w operatorze implikacyjnym opisuje wybrany punkt odniesienia względem którego kodujemy tabelę symboliczną.

Kodowanie zero-jedynkowe definicji symbolicznej ABCD123

Ustalmy punkt odniesienia na warunku wystarczającym =>:
A: p=>q =1
co matematycznie oznacza:
A: (p=1) => (q=1)
Kodowanie poprzednika:
(p=1) = (p=1)
(~p=1)=(p=0) - prawo Prosiaczka
Kodowanie następnika:
(q=1) = (q=1)
(~q=1) = (q=0) - prawo Prosiaczka
Efekty kodowania dla punktu odniesienia A: p=>q widać w tabeli zero-jedynkowej ABCD458

Ustalmy kolejny punkt odniesienia na warunku koniecznym ~>:
C: ~p~>~q =1
co matematycznie oznacza:
C: (~p=1)~>(~q=1)
Kodowanie poprzednika:
(~p=1) = (~p=1)
(p=1) = (~p=0) - prawo Prosiaczka
Kodowanie następnika:
(~q=1) = (~q=1)
(q=1) = (~q=0) - prawo Prosiaczka
Efekty kodowania dla punktu odniesienia C: ~p~>~q widać w tabeli zero-jedynkowej ABCD679

Operator logiczny implikacji prostej p|=>q to wszystkie cztery linie A, B, C, D a nie jedna, wybrana.
Implikacja prosta będzie prawdziwa p|=>q =1 gdy prawdziwe będzie jedno ze zdań A, C lub D
Inaczej implikacja prosta będzie fałszywa p|=>q =0 (zdanie B)

Tożsamość kolumn wynikowych 8=9 jest dowodem formalnym prawa Kubusia:
p=>q = ~p~>~q

Prawo Kubusia to tożsamość logiczna (równoważność) o znaczeniu:
p=>q = ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej wymusza fałszywość drugiej strony

Logika dodatnia i ujemna w implikacji:
p=>q = ~p~>~q
Warunek wystarczający => lub konieczny ~> wyrażony jest w logice dodatniej p=>q wtedy i tylko wtedy gdy następnik nie jest zanegowany (q)
Warunek wystarczający => lub konieczny ~> wyrażony jest w logice ujemnej ~p~>~q wtedy i tylko wtedy gdy następnik jest zanegowany (~q)

Zauważmy, że w tabeli symbolicznej ABCDdef występujące tu jedynki możemy odczytać z wejściowej matrycy zero-jedynkowej ABCD4567.


3.2 Operator implikacji odwrotnej p|~>q

Definicja operatora implikacji odwrotnej |~> w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
p|~>q = (p~>q)*~(p=>q)
Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Zbiór P2 jest konieczny ~> dla zbudowania zbioru P8
Zabieram zbiór P2 i znika mi zbiór P8

Dodatkowo zbiory P2 i P8 nie są tożsame co wymusza przynależność warunku wystarczającego A do operatora implikacji odwrotnej:
P2|~>P8 = (P2~>P8)*~[P2=P8] = 1*~(0) = 1*1 =1

Definicja operatora implikacji odwrotnej |~> w zdarzeniach:
Zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q i nie jest tożsame ze zdarzeniem q, co matematycznie zapisujemy ~[p=q]
p|~>q = (p~>q)*~[p=q]
Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Definicja warunku koniecznego ~> spełniona bo zabieram chmury wykluczając padanie
Dodatkowo pojęcie „chmury” nie jest tożsame z pojęciem „pada” bo nie zawsze gdy są chmury, pada.
Stąd mamy dowód, iż warunek wystarczający => A jest częścią operatora implikacji odwrotnej |~>:
CH|~>P = (CH~>P)*~[CH=P] = 1*~(0) = 1*1 =1

Diagram implikacji odwrotnej |~> w zbiorach:


Symboliczną definicję implikacji odwrotnej p|~>q odczytujemy z diagramu:
A.
Jeśli zajdzie p to może ~> zajść q
p~>q =[p*q=q] =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q bo zbiór p jest nadzbiorem ~> zbioru q
Zabieram zbiór p i znika mi zbiór q
lub
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Definicja kwantyfikatora małego ~~> spełniona bo istnieje co najmniej jeden element wspólny zbiorów p i ~q.
Zajście p nie jest warunkiem koniecznym ~> dla zajścia ~q bo prawo Kubusia:
p~>~q = ~p=>q = ~p*q =0 - bo zbiory ~p i q są rozłączne
… a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q = ~p=>~q
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q = [~p*~q=~p] =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q bo zbiór ~p jest podzbiorem => zbioru ~q
Wymuszam dowolny element ze zbioru ~p i ten element na 100% będzie w zbiorze ~q
Prawdziwość warunku wystarczającego C wymusza fałszywość kontrprzykładu D.
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =0
Bo zbiory ~p i q są rozłączne

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego C: ~p=>~q nazywamy zdanie D: ~p~~>q z zanegowanym następnikiem kodowane kwantyfikatorem małym ~~>
C: ~p=>~q
D: ~p~~>q
Rozstrzygnięcia:
Fałszywość kontrprzykładu D: ~p~~>q =0 wymusza prawdziwość warunku wystarczającego C: ~p=>~q =1 (i odwrotnie)
Prawdziwość kontrprzykładu D: ~p~~>q =1 wymusza fałszywość warunku wystarczającego C: ~p=>~q =0 (i odwrotnie)

Zauważmy, że w implikacji odwrotnej p|~>q po stronie p mamy „rzucanie monetą”:
Jeśli zajdzie p to może ~> zajść q (zdanie A) lub może ~~> zajść ~q (zdanie B)
Natomiast po stronie ~p mamy gwarancję matematyczną =>:
C.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1

Zauważmy, że w implikacji prostej było dokładnie odwrotnie i to jest ta fundamentalna różnica między implikacją prostą p|=>q i odwrotną p|~>q.
Gdzie ta różnica znajduje zastosowanie?
Obsługa wszelkich obietnic to na mocy definicji implikacja prosta p|=>q
Obsługa wszelkich gróźb to na mocy definicji implikacja odwrotna p|~>q
Szczegóły poznamy niebawem.

Przykład:
A.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P = CH*P =1
W zapisie formalnym:
p~>q = p*q =1
co matematycznie oznacza:
(p=1)~>(q=1) =1
Chmury są konieczne ~> aby jutro padało bo jak nie będzie chmur to na pewno => nie będzie padać
W naturalny sposób odkryliśmy tu prawo Kubusia:
CH~>P = ~CH=>~P
lub
B.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
W zapisie formalnym:
p~~>~q = p*~q =1
co matematycznie oznacza:
(p=1)~~>(~q=1) =1
Kwantyfikator mały ~~> spełniony bo możliwa ~~> jest sytuacja są chmury (CH=1) i nie pada (~P=1)
… a jeśli nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
C.
Jeśli jutro nie będzie pochmuro (~CH=1) to na pewno => nie będzie padało (~P=1)
~CH=>~P = ~CH*~P =1
W zapisie formalnym:
~p=>~q = ~p*~q =1
co matematycznie oznacza:
(~p=1)=>(~q=1) =1
Definicja warunku wystarczającego => bo brak chmur wymusza => brak opadów
Spełniony warunek wystarczający => C wymusza fałszywość kontrprzykładu D.
D.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0 - sytuacja niemożliwa
W zapisie formalnym:
~p~~>q = ~p*q =0
co matematycznie oznacza:
(~p=1)~~>(q=1) =1

Przechodzimy na zapis formalny podstawiając:
p=CH
q=P

Kodowanie zero-jedynkowe analizy symbolicznej implikacji odwrotnej p|~>q:
Kod:

IO: Implikacja odwrotna p|~>q
                 Y ~Y  p  q ~p ~q  p~>q ~p=>~q |Co matematycznie oznacza
A: p~> q = p* q =1  0  1  1  0  0   =1    =1   |( p=1)~> ( q=1) =1
B: p~~>~q= p*~q =1  0  1  0  0  1   =1    =1   |( p=1)~~>(~q=1) =1
C:~p=>~q =~p*~q =1  0  0  0  1  1   =1    =1   |(~p=1)=> (~q=1) =1
D:~p~~>q =~p* q =0  1  0  1  1  0   =0    =0   |(~p=1)~~>( q=1) =0
   1   2   a  b  3  c  4  5  6  7    8     9      d        e     f
Y=(p|~>q)

Definicję symboliczną operatora implikacji odwrotnej ABCD123 możemy zakodować z dwóch różnych punktów odniesienia.

1.
Kodowanie implikacji odwrotnej p|~>q w spójnikach „lub”(+) i „i”(*)


Prawo Sowy:
Nagłówek kolumny wynikowej w dowolnej tabeli zero-jedynkowej wyrażonej spójnikami „lub”(+) i „i”(*) opisuje wyłącznie wynikowe jedynki w tej kolumnie.

Z tabeli symbolicznej ABCDab3c odczytujemy:
Tabela ABCDab3:
Y=(p|~>q) = A: p*q + B: p*~q + C: ~p*~q
co matematycznie oznacza:
Y=1 <=> A: (p=1 i q=1) lub B: (p=1 i ~q=1) lub C: (~p=1 i ~q=1)
Tabela ABCDabc:
~Y=(~p|~>q) = D: ~p*q
co matematycznie oznacza:
~Y=1 <=> D: (~p=1 i q=1)

Operator logiczny implikacji odwrotnej p|~>q to wszystkie cztery linie A, B, C, D a nie jedna, wybrana.
Implikacja odwrotna będzie prawdziwa p|~>q =1 gdy prawdziwe będzie jedno ze zdań A, B lub C
Inaczej implikacja odwrotna będzie fałszywa p|~>q =0 (zdanie D)

2.
Kodowanie implikacji prostej p|=>q wyrażonej spójnikami implikacyjnymi =>, ~>, ~~>


Prawo Puchacza:
Nagłówek kolumny wynikowej w operatorze implikacyjnym opisuje wybrany punkt odniesienia względem którego kodujemy tabelę symboliczną.

Kodowanie zero-jedynkowe definicji symbolicznej ABCD123

Ustalmy punkt odniesienia na warunku koniecznym ~>:
A: p~>q =1
co matematycznie oznacza:
A: (p=1) ~> (q=1)
Kodowanie poprzednika:
(p=1) = (p=1)
(~p=1)=(p=0) - prawo Prosiaczka
Kodowanie następnika:
(q=1) = (q=1)
(~q=1) = (q=0) - prawo Prosiaczka
Efekty kodowania dla punktu odniesienia A: p~>q widać w tabeli zero-jedynkowej ABCD458

Ustalmy kolejny punkt odniesienia na warunku wystarczającym ~>:
C: ~p=>~q =1
co matematycznie oznacza:
C: (~p=1)=>(~q=1)
Kodowanie poprzednika:
(~p=1) = (~p=1)
(p=1) = (~p=0) - prawo Prosiaczka
Kodowanie następnika:
(~q=1) = (~q=1)
(q=1) = (~q=0) - prawo Prosiaczka
Efekty kodowania dla punktu odniesienia C: ~p=>~q widać w tabeli zero-jedynkowej ABCD679

Operator logiczny implikacji odwrotnej p|~>q to wszystkie cztery linie A, B, C, D a nie jedna, wybrana.
Implikacja odwrotna będzie prawdziwa p|~>q =1 gdy prawdziwe będzie jedno ze zdań A, B lub C
Inaczej implikacja odwrotna będzie fałszywa p|~>q =0 (zdanie D)

Tożsamość kolumn wynikowych 8=9 jest dowodem formalnym prawa Kubusia:
p~>q = ~p=>~q

Zauważmy, że w tabeli symbolicznej ABCDdef występujące tu jedynki możemy odczytać z wejściowej matrycy zero-jedynkowej ABCD4567.


8.3 Operator równoważności p<=>q

Zacznijmy od definicji implikacji prostej p|=>q:


Definicja implikacji prostej p|=>q w zbiorach:
p|=>q =(p=>q)*~[p=q]
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q

Definicja równoważności w zbiorach:
p<=>q = (p=>q)*[p=q]
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q

Z definicji równoważności wynika, że powyższy diagram będzie pasował do równoważności wtedy i tylko wtedy gdy zlikwidujemy obszar niebieski.

Obszar niebieski zniknie wtedy i tylko wtedy będzie zachodziła tożsamość zbiorów p=q
która wymusza tożsamość zbiorów ~p=~q.


Stąd mamy:
Definicja równoważności w zbiorach:
Równoważność to dwa i tylko dwa zbiory niepuste w obrębie dowolnej dziedziny

Doskonale widać, że przy tożsamości zbiorów p=q znika obszar niebieski. Niebieską obwódkę, ślad po zbiorze występującym w implikacji, pozostawiono dla celów edukacyjnych.

Przykładowa, fizyczna realizacja zlikwidowania obszaru niebieskiego, jedna z wielu możliwych, jest następująca.

Obszar niebieski zlikwidujemy wtedy i tylko wtedy gdy:
p=>q - zbiór p będzie podzbiorem => zbioru q
i jednocześnie:
~p=>~q - zbiór ~p będzie podzbiorem => zbioru ~q

Stąd mamy aksjomatyczną definicję równoważności dającą w wyniku tabelę zero-jedynkową równoważności w sposób bezpośredni.

Aksjomatyczna definicja równoważności w logice dodatniej (bo q):
p<=>q = (p=>q)*(~p=>~q)

Symetryczna definicja w logice ujemnej (bo ~q):
~p<=>~q = (~p=>~q)*(p=>q)

Doskonale widać, że w tej definicji obszar niebieski znika.

Zapiszmy symbolicznie definicję równoważności w zbiorach odczytaną z powyższego diagramu.
Kod:

RA:                 p<=>q=(p=>q)*(~p=>~q)
A: p=> q = p* q = p =1 - zbiór p jest podzbiorem => q
B: p~~>~q= p*~q     =0 - zbiory p i ~q są rozłączne
RC:                ~p<=>~q=(~p=>~q)*(p=>q)
C:~p=>~q =~p*~q =~p =1 - zbiór ~p jest podzbiorem => ~q
D:~p~~>q =~p* q     =0 - zbiory ~p i q są rozłączne

Dla kodowania definicji symbolicznej z punktem odniesienia ustawionym na zdaniu A: p=>q otrzymujemy zero-jedynkową definicję równoważności w logice dodatniej (bo q):
RA: p<=>q = (p=>q)*(~p=>~q)
Punkt odniesienia:
A: p=>q
Kodowanie definicji symbolicznej dla p
(p=1) = (p=1)
(~p=1) = (p=0) - prawo Prosiaczka
Kodowanie definicji symbolicznej dla q
(q=1) = (q=1)
(~q=1) = (q=0) - prawo Prosiaczka

Dla kodowania definicji symbolicznej z punktem odniesienia ustawionym na zdaniu C: ~p=>~q otrzymujemy zero-jedynkową definicję równoważności w logice ujemnej (bo ~q):
RC: ~p<=>~q = (~p=>~q)*(p=>q)
Punkt odniesienia:
C: ~p=>~q
Kodowanie definicji symbolicznej dla ~p
(~p=1) = (~p=1)
(p=1) = (~p=0) - prawo Prosiaczka
Kodowanie definicji symbolicznej dla q
(~q=1) = (~q=1)
(~q=1) = (q=0) - prawo Prosiaczka
Kod:

Definicja symboliczna |Matryca     |Kodowanie        |Kodowanie
równoważności p<=>q   |wejściowa   |dla A: p=>q      |dal C: ~p=>~q
                      |            | p<=>q           |~p<=>~q
                p<=>q | p  q ~p ~q | =(p=>q*(~p=>~q) | =(~p=>~q)*(p=>q)
A: p=> q = p* q =1    | 1  1  0  0 |  =1             |  =1
B: p~~>~q= p*~q =0    | 1  0  0  1 |  =0             |  =0
C:~p=>~q =~p*~q =1    | 0  0  1  1 |  =1             |  =1
D:~p~~>q =~p* q =0    | 0  1  1  0 |  =0             |  =0
   a   b   c  d  e      1  2  3  4     5                 6

Tożsamość kolumn wynikowych 5=6 jest dowodem formalnym prawa algebry Boole’a:
p<=>q = ~p<=>~q

Zauważmy, że obszaru niebieskiego w implikacji prostej p|=>q pozbędziemy się również w ten sposób.
Obszar niebieski zniknie wtedy i tylko wtedy gdy:
zbiór p jest nadzbiorem ~> zbioru q
i
Zbiór ~p jest nadzbiorem ~> zbioru ~q
Stąd mamy tożsamą definicję równoważności:
p<=>q = (p~>q)*(~p~>~q)

Definicja symboliczna równoważności przyjmie tu postać:
Kod:

RA:                 p<=>q=(p~>q)*(~p~>~q)
A: p~> q = p* q = p =1 - zbiór p jest nadzbiorem ~> q
B: p~~>~q= p*~q     =0 - zbiory p i ~q są rozłączne
RC:                ~p<=>~q=(~p~>~q)*(p~>q)
C:~p~>~q =~p*~q =~p =1 - zbiór ~p jest nadzbiorem ~> ~q
D:~p~~>q =~p* q     =0 - zbiory ~p i q są rozłączne

Zauważmy, że w równoważności p<=>q warunek konieczny ~> oznacza identyczną pewność matematyczną jaką mamy w warunku wystarczającym =>, bo linie B i D są twardym fałszem

Warunek konieczny ~> wchodzący w skład równoważności możemy zapisać tak:
A.
Jeśli zajdzie p to na pewno ~> zajdzie q
p~>q =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q bo zbiór p jest nadzbiorem ~> zbioru q
Oczywistość wobec tożsamości zbiorów p=q

Warunek wystarczający => wchodzący w skład równoważności zapisujemy tak:
B.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q bo zbiór p jest podzbiorem => zbioru q
Oczywistość wobec tożsamości zbiorów p=q

Zauważmy, że w zapisie słownym zdania A i B brzmią identycznie oznaczając co innego jeśli chodzi o matematykę ścisłą.

Matematycznie zachodzi bowiem:
Warunek wystarczający => ## warunek konieczny ~>
gdzie:
## - różne na mocy definicji

Popularna definicja równoważności:
Równoważność <=> to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między dowolnymi dwoma punktami
p<=>q = (p=>q)*(p~>q) = 1*1 =1

Wyprowadziliśmy wyżej prawo algebry Boole’a:
R1: p<=>q = ~p<=>~q
Inne trywialne zapisy umożliwiające pozbycie się obszaru niebieskiego w implikacji są następujące:
R2: p<=>q = (p=>q)*(~p=>~q)
R3: ~p<=>~q = (~p=>~q)*(p=>q)
R4: p<=>q = (p=>q)*(q=>p)
R5: ~p<=>~q = (~p=>~q)*(~q=>~p)
Z R1 i R5 wynika R6:
R1: p<=>q = ~p<=>~q
R5: ~p<=>~q = (~p=>~q)*(~q=>~p)
R6: p<=>q = (~p=>~q)*(~q=>~p)

Z R2 i R6 wynika I prawo kontrapozycji poprawne w równoważności:
R2: p<=>q = (p=>q)*(~p=>~q)
R6: p<=>q = (~p=>~q)*(~q=>~p)
p=>q = ~q=>~p

Z R2 i R4 wynika II prawo kontrapozycji poprawne w równoważności:
R2: p<=>q = (p=>q)*(~p=>~q)
R4: p<=>q = (p=>q)*(q=>p)
q=>p = ~p=>~q

Kolejne definicje równoważności:
R7.
Obszar niebieski zniknie jeśli zbiór p będzie podzbiorem => zbioru q i jednocześnie zbiór p będzie nadzbiorem ~> zbioru q
R7: p<=>q = (p=>q)*(p~>q)

Definicja symetryczna.
R8.
Obszar niebieski zniknie jeśli zbiór ~p będzie podzbiorem => zbioru ~q i jednocześnie zbiór ~p nadzbiorem ~> zbioru ~q
R8: p<=>q = (~p=>~q)*(~p~>~q)

Z R2 i R8 mamy I prawo Kubusia w równoważności:
R2: p<=>q = (p=>q)*(~p=>~q)
R8: p<=>q = (~p=>~q)*(~p~>~q)
p=>q = ~p~>~q

Z R2 i R7 mamy II prawo Kubusia w równoważności:
R2: p<=>q = (p=>q)*(~p=>~q)
R7: p<=>q = (p=>q)*(p~>q)
p~>q = ~p=>~q

Twierdzenie Pitagorasa.



Twierdzenie Pitagorasa:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi suma kwadratów
TP<=>SK = (TP=>SK)*(~TP=>~SK)
Zbiory TP i SK są tożsame co wymusza definicję równoważności.
RA.
TP<=>SK = (TP=>SK)*(~TP=>~SK)
TP=>SK
Warunek wystarczający w logice dodatniej (bo SK) to wyłącznie linia A:
A.
Jeśli trójkąt jest prostokątny to zachodzi suma kwadratów
TP=>SK=1
Bycie trójkątem prostokątnym wystarcza => do tego, aby zachodziła suma kwadratów.
Zbiory:
TP=>SK = [TP*SK = TP] =[TP=TP] =1
Definicja warunku wystarczającego => spełniona bo:
Zbiór TP jest podzbiorem => zbioru SK .
Oczywistość wobec tożsamości zbiorów TP=SK.
Kontrprzykładem dla warunku wystarczającego A jest zdanie B.
B.
Jeśli trójkąt jest prostokątny to może ~~> nie zachodzić suma kwadratów
TP~~>~SK=0 - twardy fałsz wynikły wyłącznie z A
Zbiory:
TP~~>~SK = [TP*~SK] =[]=0
Zbiory TP i ~SK są rozłączne, co wymusza w wyniku 0

RC.
~TP<=>~SK = (~TP=>~SK)*(TP=>SK)
~TP=>~SK
Warunek wystarczający w logice ujemnej bo (~SK) to wyłącznie linia C:
C.
Jeśli trójkąt nie jest prostokątny to na pewno => nie zachodzi suma kwadratów
~TP=>~SK =1
Nie bycie trójkątem prostokątnym wystarcza => do tego, aby nie zachodziła suma kwadratów.
Zbiory:
~TP=>~SK = [~TP*~SK = ~TP] =[~TP=~TP] =1
Definicja warunku wystarczającego spełniona bo:
Zbiór ~TP jest podzbiorem => zbioru ~SK
Oczywistość wobec tożsamości zbiorów ~TP=~SK.
Kontrprzykładem dla warunku wystarczającego C jest zdanie D.
D.
Jeśli trójkąt nie jest prostokątny to może ~~> zachodzić suma kwadratów
~TP~~>SK=0 - twardy fałsz wynikły wyłącznie z C
Zbiory:
~TP~~>SK = [~TP*SK] =[]=0
Zbiory ~TP i SK są rozłączne, co wymusza w wyniku 0

Definicja równoważności:
TP<=>SK = (TP=>SK)*(~TP=>~SK) =1*1=1
Z prawej strony mamy do czynienia wyłącznie z warunkami wystarczającymi o definicjach w A i C.
To nie są operatory logiczne, to zaledwie „połówki” operatora równoważności.


8.4 Operator chaosu p|~~>q


Definicja operatorów chaosu p|~~>q w zbiorach:
Zbiór p ma część wspólną ~~> ze zbiorem q i żaden z nich nie zawiera się w drugim
p|~~>q = (p~~>q)*~(p=>q)*~(q=>p)

Operator chaosu |~~> jest mało ciekawy bo nie ma tu żadnej gwarancji matematycznej =>, omówimy go zatem wyłącznie na przykładzie.

Przykład z matematycznego przedszkola:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3=1 bo 24

Analiza matematyczna przez wszystkie możliwe przeczenia p i q:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
p~~>q=p*q =1
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 3
P8~~>~P3 = P8*~P3 =1 bo 8
p~~>~q =p*~q =1
C.
Jeśli liczba nie jest podzielna przez 8 to może ~~> nie być podzielna przez 3
~P8~~>~P3 = ~P8*~P3 =1 bo 5
~p~~>~q = ~p*~q =1
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 3
~P8~~>P3 = ~P8*P3 =1 bo 3
~p~~>q = ~p*q =1

Wystarczy znaleźć po jednym elemencie wspólnym dla A, B, C, D i mamy rozstrzygnięcie.
Zdanie A jest zawsze prawdziwe, niezależnie od przeczeń p i q, zatem jest to matematyczny śmieć, bez żadnej gwarancji matematycznej.


4.0 Obietnice i groźby

Najważniejszymi definicjami w świecie istot żywych są definicje obsługujące obietnice i groźby.
Podlegają pod nie wszystkie stworzenia żywe od bakterii poczynając.
Zwierzątka które nie posługują się w praktyce tymi definicjami dawno wyginęły.

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta W|=>N na mocy definicji
Gwarancja w obietnicy:
W=>N
Jeśli spełnisz warunek nagrody (W=1) to na pewno => dostaniesz nagrodę (N=1) z powodu że spełniłeś warunek nagrody (W=1)

W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie dać, zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
Implikacja odwrotna W|~>K na mocy definicji
Gwarancja w groźbie:
~W=>~K
Jeśli nie spełnisz warunku kary (~W=1) to na pewno => nie zostaniesz ukarany (~K=1) z powodu że nie spełniłeś warunku kary (~W=1)
Jak widzimy znaczenie znaczka => jest identyczne w obu definicjach.

W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.


4.1 Klasyka obietnicy

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta W|=>N na mocy definicji

Przykład:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1 - gwarancja matematyczna
Bycie grzecznym jest warunkiem wystarczającym => dla otrzymania czekolady.
stąd:
B.
Jeśli będziesz grzeczny to możesz ~~> nie dostać czekolady
G~~>~C =0 - złamanie obietnicy

… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C =1
Bycie niegrzecznym jest warunkiem koniecznym ~>, aby nie dostać czekolady.
Na mocy definicji obietnicy (implikacja prosta G|=>C) nie ma znaczenia w jak ostrej formie wypowiemy groźbę C. Zdanie C musimy kodować warunkiem koniecznym ~>, inaczej gwałcimy matematykę ścisłą, definicję implikacji prostej G|=>C!
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1 - akt miłości = akt łaski
Prawdziwość zdania C gwarantuje nam matematyka ścisła (implikacja prosta) która nie zależy od widzi mi się człowieka.
To jest matematyczne prawo nadawcy do darowania dowolnej kary zależnej od niego.
Oczywiście może ~~> darować, ale nie musi => darować.
Ojciec może tu darować karę mówiąc:
Synku, byłeś niegrzeczny, dostajesz czekoladę bo cię kocham.
Uzasadnienie nie może być zależne, czyli identyczne jak poprzednik:
Synku, byłeś niegrzeczny, dostajesz czekoladę bo byłeś niegrzeczny
Tu ojciec jest kłamcą.


4.2 Klasyka groźby

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
Implikacja odwrotna W|~>K na mocy definicji

Przykład:
A:
Jeśli ubrudzisz spodnie to na 100% dostaniesz lanie
B~>L =1
Na mocy definicji groźby (implikacja odwrotna B|~>L) brudne spodnie są warunkiem koniecznym ~> dla dostania lania z powodu brudnych spodni!
Zdania A nie wolno nam kodować warunkiem wystarczającym => bo zgwałcimy definicję implikacji odwrotnej B|~>L którą na mocy definicji jest dowolna groźba.
LUB
B:
Jeśli ubrudzisz spodnie to możesz ~~> nie dostać lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
Prawdziwość zdania B gwarantuje nam matematyka ścisła (implikacja odwrotna B|~>L), która nie zależy od chciejstwa człowieka.
Nadawca ma matematyczne prawo do darowania dowolnej kary (akt łaski) zależnej od niego:
I rzekł mu: "Zaprawdę, powiadam ci, jeszcze dziś będziesz ze mną w raju". (Łk 23, 43)

Nadawca może darować karę z dowolnym uzasadnieniem niezależnym:
Synku, ubrudziłeś spodnie, nie dostajesz lania bo cię kocham
Nadawca będzie kłamcą, jeśli wypowie uzasadnienie zależne, identyczne jak poprzednik:
Synku, ubrudziłeś spodnie, nie dostajesz lania, bo ubrudziłeś spodnie

… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia

C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania
~B => ~L =1 - twarda prawda, gwarancja matematyczna
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje warunek wystarczający =>.
stąd:
D:
Jeśli nie ubrudzisz spodni to możesz ~~> dostać lanie
~B ~~> L =0 - twardy fałsz, zakaz karania niewinnego tzn. z powodu czystych spodni!


Post został pochwalony 0 razy

Ostatnio zmieniony przez rafal3006 dnia Nie 9:29, 14 Sie 2016, w całości zmieniany 12 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 20113
Przeczytał: 18 tematów

Pomógł: 138 razy
Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 6:13, 13 Sie 2016    Temat postu:

...

Post został pochwalony 0 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 20113
Przeczytał: 18 tematów

Pomógł: 138 razy
Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 6:19, 13 Sie 2016    Temat postu:

.

Post został pochwalony 0 razy
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin