Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

świAt kobiety .stety

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Powitania
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
krowa
Areszt za spam, do odwołania



Dołączył: 18 Mar 2010
Posty: 7736
Przeczytał: 36 tematów

Pomógł: 265 razy

Płeć: Mężczyzna

PostWysłany: Pon 2:16, 05 Lis 2018    Temat postu: świAt kobiety .stety

mam narzeczonom no nie? ona chyba wyglonda tak https://www.youtube.com/watch?v=RGREN-cpsds
nie ma się z kogo śmiać a można sie uśmiechać


Post został pochwalony 0 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Adriatyk
Proszę oczyść posty w DR



Dołączył: 06 Mar 2016
Posty: 2882
Przeczytał: 75 tematów

Pomógł: 22 razy

Płeć: Mężczyzna

PostWysłany: Śro 18:55, 07 Lis 2018    Temat postu:

Twierdzenia matematyczne - wersja dla 5-cio latków!
Czyli:
Armagedon totalnie całej, ziemskiej logiki matematycznej!


Teoria niezbędna dla zrozumienia niniejszego postu:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-definicjach,11451.html#399473
Algebra Kubusia w definicjach napisał:

1.4 Logika zdań warunkowych

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>

Elementarne definicje w algebrze Kubusia to:
p=>q - definicja warunku wystarczającego =>
p~>q - definicja warunku koniecznego ~>
p~~>q - definicja elementu wspólnego zbiorów ~~> (w zdarzeniach: sytuacja możliwa)
p~~>~q=p*~q - definicja kontrprzykładu

1.4.1 Definicja warunku wystarczającego =>

Definicja warunku wystarczającego => w zbiorach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej: p=>q =0

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p wymusza => zajście zdarzenia q
Inaczej: p=>q =0

1.4.2 Definicja warunku koniecznego ~>

Definicja warunku koniecznego ~> w zbiorach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej: p~>q =0

Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej: p~>q =0


1.4.3 Definicja elementu wspólnego zbiorów ~~> lub zdarzenia możliwego ~~>

Definicja spójnika „i”(*) w logice matematycznej:
Definicja spójnika „i”(*) w logice matematycznej jest tożsama z definicją elementu wspólnego zbiorów ~~> (zdarzenia możliwego ~~>)

Wniosek:
Z definicji spójnika „i”(*) wynika, że w zdaniu zawierającym dowolne spójniki logiczne dziedzina musi być wspólna dla użytych w zdaniu argumentów.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1*1 =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy iloczyn logiczny zbiorów p i q nie jest zbiorem pustym
Czytamy:
Oba zbiory istnieją p=1 i q=1 i mają element wspólny, stąd zdanie kodowane elementem wspólnym zbiorów ~~> jest prawdziwe (=1)
Inaczej:
p~~>q = p*q =1*1 =0 - zbiory p i q są rozłączne
Czytamy:
Oba zbiory istnieją p=1 i q=1 ale są rozłączne, stąd zdanie kodowane elementem wspólnym zbiorów ~~> jest fałszywe (=0)

Definicja zdarzenia możliwego ~~>
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1*1 =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q
Czytamy:
Oba zdarzenia są możliwe p=1 i q=1 i możliwe jest (=1) jednoczesne zajście zdarzeń p i q, stąd zdanie kodowane zdarzeniem możliwym ~~> jest prawdziwe (=1)
Inaczej:
p~~>q = p*q =1*1 =0 - gdy nie jest możliwe równoczesne zajście zdarzeń p i q
Czytamy:
Oba zdarzenia są możliwe p=1 i q=1, ale niemożliwe jest (=0) jednoczesne zajście zdarzeń p i q, stąd zdanie kodowane zdarzeniem możliwym ~~> jest fałszywe (=0).

1.4.4 Definicja kontrprzykładu w zbiorach lub w zdarzeniach możliwych

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane definicją elementu wspólnego zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane definicją zdarzenia możliwego p~~>~q=p*~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

1.4.5 Prawo Kobry

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q" przy argumentach w tej samej fazie (oba niezanegowane lub oba zanegowane) jest istnienie wspólnego elementu zbiorów ~~> (zdarzenia możliwego ~~>)
Uwaga:
Argumenty musza być w tej samej fazie bo:
Prawo rozpoznawalności pojęcia p:
Pojęcie p jest rozpoznawalne wtedy i tylko wtedy gdy rozpoznawalne jest jego zaprzeczenia (~p):
p<=>~p = (p=>~p)*(~p=>p)
Tu prawo Kobry jest fałszywe bo pojęcia (zbiory) p i ~p są rozłączne:
p~~>~p = p*~q = [] =0


1.6 Prawa rachunku zero-jedynkowego dla zdań warunkowych

Kod:

T1
Zero-jedynkowa definicja warunku wystarczającego =>:
p q p=>q
A: 1 1 1
B: 1 0 0
C: 0 1 1
D: 0 0 1
Definicja w równaniu algebry Boole’a:
p=>q = ~p+q

Kod:

T2
Zero-jedynkowa definicja warunku koniecznego ~>:
p q p~>q
A: 1 1 1
B: 1 0 1
C: 0 1 0
D: 0 0 1
Definicja w równaniu algebry Boole’a:
p~>q = p+~q


1.6.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Matematyczne związki warunku wystarczającego => i koniecznego ~> w rachunku zero-jedynkowym są następujące.
Kod:

Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
p q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q
A: 1 1 0 0 =1 =1 =1 =1 =1
B: 1 0 0 1 =0 =0 =0 =0 =0
C: 0 0 1 1 =1 =1 =1 =1 =1
D: 0 1 1 0 =1 =1 =1 =1 =1
1 2 3 4 5

Tożsamość kolumn wynikowych 1=2=3=4=5 jest dowodem formalnym tożsamości matematycznej:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: p=>q=~p+q
Kod:

Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
p q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q
A: 1 1 0 0 =1 =1 =1 =1 =1
B: 1 0 0 1 =1 =1 =1 =1 =1
C: 0 0 1 1 =1 =1 =1 =1 =1
D: 0 1 1 0 =0 =0 =0 =0 =0
1 2 3 4 5

Tożsamość kolumn wynikowych 1=2=3=4=5 jest dowodem formalnym tożsamości matematycznej:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p~>q=p+~q

Matematyczne związki warunku wystarczającego => z koniecznego ~>:
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: p=>q=~p+q
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p~>q=p+~q
Matematycznie zachodzi:
T1: p=>q = ~p+q ## T2: p~>q = p+~q
gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## jeśli nie istnieją przekształcenia czysto matematyczne oparte o prawa rachunku zero-jedynkowego przekształcające jedną funkcję logiczną w drugą.

1.6.2 Prawa Kubusia

Prawa Kubusia
Prawa Kubusia wiążą warunek wystarczający => z warunkiem koniecznym ~> bez zamiany p i q
I Prawo Kubusia
p=>q = ~p~>~q
II Prawo Kubusia
p~>q = ~p=>~q

Interpretacja dowolnego prawa logicznego
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

1.6.3 Prawa Tygryska

Prawa Tygryska:
Prawa Tygryska wiążą warunek wystarczający => i konieczny ~> z zamianą p i q
I Prawo Tygryska
p=>q = q~>p
II Prawo Tygryska:
p~>q = q=>p


1.4.6 Aksjomatyka zdań warunkowych „Jeśli p to q”

Niniejsze 5 punktów można uznać za aksjomatykę zdań warunkowych „Jeśli p to q” w algebrze Kubusia.

Rozważmy twierdzenie matematyczne:
A.
Jeśli dowolne zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =?
Zbiory z którymi mamy do czynienia w tym twierdzeniu to:
P=[pies] - zbiór jednoelementowy pies
4L=[pies, słoń ..] - zbiór wszystkich zwierząt z czterema łapami
Na czym polega dowód tego twierdzenia?

Po pierwsze:
Na zrozumieniu iż w poprzedniku mamy precyzyjnie zdefiniowaną dziedzinę:
ZWZ - zbiór wszystkich zwierząt

Po drugie:
Na zrozumieniu iż w poprzedniku mamy iloczyn logiczny zbiorów:
ZWZ*P =P=[pies]
Iloczyn logiczny zbiorów ZWZ*P wycina nam z dziedziny ZWZ jednoelementowy zbiór P=[pies] i wyłącznie z takim zbiorem mamy do czynienia w poprzedniku.

Po trzecie:
W dowolnym zdaniu warunkowym „Jeśli p to q” dziedzina dla p i q musi być wspólna, jednorodna i różna od Uniwersum

Definicja Uniwersum:
Uniwersum - wszelkie pojęcia zrozumiałe dla człowieka

Definicja dziedziny jednorodnej:
Dziedzina jest dziedziną jednorodną wtedy i tylko wtedy gdy definiuje ją jedno pojęcie zrozumiałe przez człowieka.
Przykłady dziedzin jednorodnych:
ZWZ - zbiór wszystkich zwierząt
ZWT - zbiór wszystkich trójkątów
Przykładowa dziedzina niejednorodna to:
D = ZWZ+ZWT - zbiór wszystkich zwierząt plus zbiór wszystkich trójkątów
W całym obszarze zdań warunkowych „Jeśli p to q” (w tym w twierdzeniach matematycznych) nikt nigdy nie przyjął choćby jednej dziedziny niejednorodnej jak wyżej, czy też za dziedzinę uznałby Uniwersum.

Po czwarte:
Na mocy powyższego (wspólna dziedzina jednorodna) w następniku mamy zbiór:
ZWZ*4L = 4L =[pies, słoń ..]

Po piąte:
Użyty w kodowaniu tego zdania znaczek warunku wystarczającego => wymaga od dowodzącego by udowodnił iż zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]

Dla każdego 5-cio latka jest oczywistym że zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterem łapami 4L=[pies, słoń..]

Definicja twierdzenia matematycznego w algebrze Kubusia:
Twierdzenie matematyczne to badanie relacji między dowolnymi pojęciami z obszaru Uniwersum
Uniwersum - wszelkie pojęcia zrozumiałe przez człowieka

Stąd mamy:
Rodzaje twierdzeń matematycznych:
I.
Twierdzenia matematyczne mówiące o spełnionym (lub nie spełnionym) warunku wystarczającym =>
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => spełniona wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej: p=>q =0
II.
Twierdzenia matematyczne mówiące o spełnionym (lub nie spełnionym) warunku koniecznym ~>
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> spełniona wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej: p~>q =0
III.
Twierdzenia matematyczne mówiące o spełnionej (lub nie spełnionej) definicji elementu wspólnego zbiorów ~~>
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Definicja elementu wspólnego zbiorów ~~> spełniona wtedy i tylko wtedy gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q
Inaczej: p~~>q = p*q =0 - zbiory p i q są rozłączne

We współczesnej „matematyce” za twierdzenia matematyczne uważa się wyłącznie definicję warunku wystarczającego =>, co jest czysto matematyczną głupotą.

Ad. I.
Twierdzenia matematyczne mówiące o spełnionym (lub nie spełnionym) warunku wystarczającym =>
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => spełniona wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej: p=>q =0

Przykład:
A.
Jeśli dowolne zwierzę jest psem (P=1) to na 100% ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd

Ad. II.
Twierdzenia matematyczne mówiące o spełnionym (lub nie spełnionym) warunku koniecznym ~>
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> spełniona wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej: p~>q =0

Matematyczne związki warunku wystarczającego => i koniecznego ~> z zamianą p i q obowiązujące ma mocy naszego wspólnego (AK+LZ) rachunku zero-jedynkowego opisuje prawo Tygryska.

Prawo Tygryska:
p=>q = q~>p

Nasz przykład:
P=>4L = 4L~>P

Zauważmy, iż każdy ziemski matematyk, nawet nasz Idiota czy Irbisol doskonale wie że jeśli zbiór p jest podzbiorem => zbioru q
p=>q =1 - bo p jest podzbiorem => q
To w drugą stronę musi być spełniona definicja nadzbioru ~>
q~>p =1 - bo q jest nadzbiorem ~> p
Dokładnie z tego faktu wynika prawo Tygryska mające swoje potwierdzenie w rachunku zero-jedynkowym.

Z powyższego wynika, że tylko i wyłącznie matematyczny koziołek matołek może twierdzić że zdanie P=>4L =1 jest twierdzeniem matematycznym, natomiast zdanie logicznie tożsame 4L~>P =1 już takim twierdzeniem matematycznym nie jest.
Czy mam rację Idioto i Irbisolu?

Prawo Tygryska:
P=>4L = 4L~>P

Interpretacja dowolnego prawa logicznego:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Prawo Tygryska nie oznacza oczywiście że warunek wystarczający => to jest to samo co warunek konieczny ~> - tak twierdzić może wyłącznie matematyczny idiota (przez małe „i”).
p=>q ## p~>q
gdzie:
## - różne na mocy definicji
Czy mam rację Idioto i Irbisolu?

Twierdzenie matematyczna P=>4L=1 jest bezdyskusyjnie prawdziwe w logice ziemian i algebrze Kubusia.
Musi być zatem prawdziwe twierdzenie matematyczne 4L~>P =1 wynikające z prawa Tygryska.

Oczywistym jest że wyłącznie matematyczny koziołek matołek może zabronić uczniowi wypowiedzenia prawdziwego twierdzenia matematycznego 4L~>P =1.

Wypowiedzmy to twierdzenie:
AO.
Jeśli dowolne zwierzę ma cztery łapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
Definicja warunku koniecznego ~> spełniona bo zbiór zwierząt z czterema łapami 4L=[pies, słoń..] jest nadzbiorem ~> zbioru jednoelementowego P=[pies] co każdy 5-cio latek widzi … żadnego pseudo matematycznego dowodu nie potrzebując.
cnd

Dowód iż warunek wystarczający p=>q to zupełnie co innego niż warunek konieczny p~>q na naszym przykładzie:
Na mocy definicji mamy:
p=>q ## p~>q
Gdzie:
## - różne na mocy definicji
Nasz przykład:
p=P
q=4L
Każde inne podstawienie to błąd podstawienia na poziomie szkoły podstawowej.
stąd mamy:
P=>4L=1 ## P~>4L=0
P=>4L =1 bo zbiór P=[pies] jest (=1) podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń..]
P~>4L =0 bo zbiór P=[pies] nie jest (=0) nadzbiorem ~> zbioru zwierząt z czterema łapami 4L=[pies, słoń..]

W powyższym przykładzie zbiory P i 4L nie były tożsame.
Zauważmy, że nawet jak zbiory p i q są tożsame, co ma miejsce w równoważności definiującej tożsamość zbiorów:
[p=q] = p<=>q = (p=>q)*(q=>p)
To dalej warunek wystarczający => jest fundamentalnie czym innym niż warunek konieczny ~>.
Dowód:
Prawo rachunku zero-jedynkowego:
q=>p = p~>q
stąd mamy:
[p=q] = p<=>q = (p=>q)*(p~>q)
Zauważmy, że gdyby zachodziła tożsamość logiczna:
p=>q = p~>q
to cała matematyka ścisła leży w gruzach bo wtedy byłoby:
[p=q] = p<=>q = (p=>q)*(p~>q) != p=>q
Gdzie:
!= - matematyka ścisła leży w gruzach
cnd.

Dowód na przykładzie:
Weźmy równoważność Pitagorasa:
[TP=SK] = TP<=>SK = TPP: (TP=>SK)* TOP: (SK=>TP) = TPP: (TP=>SK)* TOP’: (TP~>SK) =1*1 =1

Prawo Tygryska mówiące o związku warunku wystarczającego => i koniecznego ~> z zamianą p i q:
p=>q = q~>p

Stąd dla naszego przykładu mamy:
TOP: SK=>TP = TOP’: TP~>SK

Wypowiedzmy twierdzenie proste Pitagorasa:
TPP.
Jeśli trójkąt jest prostokątny to na 100% zachodzi w nim suma kwadratów
TP=>SK =1
Po dowód TPP odsyłam do Wikipedii
Na mocy definicji warunku wystarczającego => mamy:
Zbiór TP jest podzbiorem => zbioru SK

Wypowiedzmy twierdzenie odwrotne Pitagorasa:
TOP.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% ten trójkąt jest prostokątny
SK=>TP=1
Po dowód TOP odsyłam do Wikipedii
Na mocy definicji warunku wystarczającego => mamy:
Zbiór SK jest podzbiorem => zbioru TP

Stąd mamy równoważność Pitagorasa obowiązującą dla trójkątów prostokątnych:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
TP<=>SL = TPP: (TP=>SK)* TOP: (SK=>TP) =1*1 =1

Stąd mamy dowód tożsamości zbiorów TP=SK:
[TP=SK] = TP<=>SK = TPP: (TP=>SK)* TOP: (SK=>TP) = TPP: (TP=>SK)* TOP’: (TP~>SK) =1*1 =1

Wypowiedzmy tożsame matematycznie twierdzenie odwrotne Pitagorasa z użyciem warunku koniecznego ~>:
TOP’.
Jeśli trójkąt jest prostokątny to na 100% zachodzi w nim suma kwadratów
TP~>SK =1
Definicja warunku koniecznego ~> jest spełniona bo zbiory TP i SK są tożsame TP=SK co udowodniono twierdzeniami TPP i TPO.
Dowód:
Każdy zbiór jest zarówno podzbiorem => siebie samego, jak i nadzbiorem ~> siebie samego.

Zauważmy, że twierdzenia matematyczne TPP i TOP’ brzmią identycznie z dokładnością do każdej literki i każdego przecinak, a mimo to są to twierdzenia różne na mocy definicji ##.
[TP=SK] = TP<=>SK = TPP: (TP=>SK)* TOP’: (TP~>SK) =1*1 =1

Zauważmy, że gdyby zachodziła tożsamość logiczna:
TPP: (TP=>SK) = TOP’: TP~>SK
to cała matematyka ścisła leży w gruzach bo wówczas byłoby:
[TP=SK] = TP<=>SK = TPP: (TP=>SK)* TOP’: (TP~>SK) != TPP: (TP=>SK)
gdzie:
!= - matematyka ścisła leży w gruzach

W tym momencie dochodzimy do dowodu wewnętrznej sprzeczności logiki matematycznej ziemskich matematyków której fundamentem jest twierdzenie koziołka matołka.

Twierdzenie koziołka matołka:
Dwa zdania identyczne z dokładnością do każdej literki i każdego przecinka są matematycznie tożsame

Ciut wyżej udowodniliśmy, że twierdzenie koziołka matołka jest fałszywe i tego dowodu nie obali najwybitniejszy nawet ziemski matematyk!
Wynika z tego, że miejsce ziemskiej logiki matematycznej zbudowanej na gównie zwanym Klasycznym Rachunkiem Zdań jest w piekle na wiecznych piekielnych mękach.
Już niedługo żaden ziemski matematyk nie będzie pamiętał co to był ten Klasyczny Rachunek Zdań a powód tego jest prozaiczny.
Nowe pokolenie matematyków wykształcone na poprawnej logice matematycznej, algebrze Kubusia, nie będzie miało najmniejszego nawet powodu by babrać się w potwornie śmierdzącym gównie zwanym Klasycznym Rachunkiem Zdań.
Tym gównie:
Jeśli 2+2=4 to Płock leży nad Wisłą
Jeśli 2+2=5 to prawdziwe jest twierdzenie Pitagorasa
Trójkąt jest kwadratem wtedy i tylko wtedy gdy trójkąt jest kołem

Odezwa do ziemskich matematyków:
Jak długo jeszcze Panowie będziecie prać mózgi naszych dzieci gównami jak wyżej?

Dowód iż dokładnie takie gówna znajdują się w każdym podręczniku matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Podręcznik matematyki do I klasy LO napisał:

Jeśli pies ma osiem łap, to Księżyc krąży wokół Ziemi
Ziemia krąży wokół Księżyca wtedy i tylko wtedy, gdy pies ma osiem łap


Ad. III.
Twierdzenia matematyczne mówiące o spełnionej (lub nie spełnionej) definicji elementu wspólnego zbiorów ~~>
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Definicja elementu wspólnego zbiorów ~~> spełniona wtedy i tylko wtedy gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q
Inaczej: p~~>q = p*q =0 - zbiory p i q są rozłączne

Każdemu wolno wypowiedzieć twierdzenie matematyczne definiujące element wspólny ~~> zbiorów p i q.
Wyłącznie matematyczny koziołek matołek może twierdzić, że takiego twierdzenia matematycznego nikomu nie wolno wypowiadać.

Przykład:
A1.
Jeśli dowolne zwierzę jest psem (P=1) to może ~~> mieć cztery łapy (4L=1)
P~~>4L = P*4L =1 bo pies
W tym przypadku wystarczy pokazać jeden element wspólny ~~> zbiorów P=[pies] i 4L=[pies, słoń..] (np. pies) co kończy dowód prawdziwości twierdzenia A1

Weźmy ciut inne zdanie:
B.
Jeśli dowolne zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L =P*~4L = [] =0
Definicja elementu wspólnego zbiorów ~~> P i ~4L nie jest spełniona (=0) bo zbiory P=[pies] i zbiór zwierząt nie mających czterech łap ~4L=[mrówka, kura ..] są rozłączne, co każdy 5-cio latek doskonale tu widzi … żadnego dowodu pseudo matematycznego nie potrzebując.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane definicją elementu wspólnego zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Zdanie B to nic innego jak definicja kontrprzykładu dla poniższego, twierdzenia matematycznego ziemskich matematyków:
A.
Jeśli zwierzę jest psem to na 100% => ma cztery łapy
P=>4L=?
Na mocy definicji kontrprzykładu udowodnienie fałszywości kontrprzykładu B jest tożsame z udowodnieniem prawdziwości warunku wystarczającego => A, czyli podstawowego twierdzenia matematycznego ziemskich matematyków.
Wniosek 1:
Nie musimy dowodzić prawdziwości twierdzenia A w sposób bezpośredni - możemy to zrobić w sposób pośredni udowadniając fałszywość kontrprzykładu B!
Wniosek 2:
Oba zdania, zarówno kontrprzykład B, jak i warunek wystarczający A to twierdzenia matematyczne!
Wniosek 3:
W tym momencie ziemski matematyk twierdzący że wyłącznie zdanie A jest twierdzeniem matematycznym, natomiast kontrprzykład B już takim twierdzeniem nie jest … po prostu matematycznie niemiłosiernie bredzi (powtórzę: bredzi!)

Podsumowując:
Algebra Kubusia to Armagedon totalnie całej ziemskiej logiki matematycznej.

Pytanie do wszystkich:
Czyż algebra Kubusia nie jest bajecznie prosta i bajecznie piękna?

[link widoczny dla zalogowanych]
silicium2002 napisał:
To nie ma sensu. Czy ktoś czytał co za brednie powypisywał na tym forum do którego podał linki. Równie dobrze możemy założyć że 2 # 2 i zacząć pisać nową matematykę. Jestem przeciwny takiemu zaśmiecaniu forum.

Silicium2002 przez przypadek zapewne (albo i nie) został prorokiem.
Dokładnie to się stało, napisaliśmy zupełnie nową matematykę od zera której kwintesencją jest niniejszy post, który wkrótce będzie fundamentem każdej lekcji logiki matematycznej wykładanej w każdym ziemskim przedszkolu.

Ziemscy matematycy typu Irbisol nie mają najmniejszych szans aby to zablokować, bowiem na 100% znajdzie się na ziemi kilku (to wystarczy) znaczących matematyków którzy staną murem za algebrą Kubusia.
_________________
Czemu logika została tak skonstruowana, że – abstrahując od sensu – okalecza pojęciowy świat?
Marek Kordas, Delta 2013


Post został pochwalony 0 razy
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Powitania Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin