 |
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
| Zobacz poprzedni temat :: Zobacz następny temat |
| Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 39886
Przeczytał: 9 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 19:51, 31 Paź 2020 Temat postu: Śmieci |
|
|
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
| Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Podstawowe prawa logiki matematycznej w algebrze Kubusia (2.6):
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
B1: p~>q = B3: q=>p
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
B3: q=>p = B2: ~p=>~q
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
A3: q~>p = A2: ~p~>~q
B1: p~>q = B4: ~q~>~p
10.1 Implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
| Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań
10.2 Implikacja prosta A|=>S w laboratorium fizyki
Fizyczna realizacja implikacji prostej p|=>q w laboratorium fizyki to zaledwie 3 elementy.
Przyciski A i W połączone równolegle sterujące żarówką S gdzie:
p=A – zmienna związana
W – zmienna wolna
q=S Żarówka S (wyjście)
| Kod: |
S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
IP
Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1
Czytamy:
Implikacja prosta A|=>S jest spełniona (=1) wtedy i tylko wtedy gdy wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (A1) i nie jest (=0) warunkiem koniecznym ~> dla świecenia żarówki S (B1)
Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
| Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa Kłapouchego to:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: A=>S =1 = 2:~A~>~S =1 [=] 3: S~>A =1 = 4:~S=>~A =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki
Analiza skrócona układu S1
| Kod: |
S1 Schemat 1
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Operator implikacji prostej A||=>S w logice to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S) - co się stanie jeśli wciśniemy A (A=1)?
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli nie wciśniemy A (~A=1)?
Kolumna A1B1:
Co może się wydarzyć, jeśli przycisk A jest wciśnięty (A=1)?
A1.
Wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S
A=>S =1
To samo w zapisie formalnym:
p=A (przycisk A)
q=S (żarówka S)
p=>q =1
Stan zmiennej wolnej W jest tu nieistotny
Z prawdziwości warunku wystarczającego A1: A=>S wynika fałszywość kontrprzykładu A1’.
A1’.
A~~>~S = A*~S =0
To samo w zapisie formalnym:
p~~>~q =0
Niemożliwe jest (=0) zdarzenie: przycisk jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Co może się wydarzyć, jeśli przycisk A nie jest wciśnięty (~A=1)?
Idziemy do kolumny A2B2:
A2.
~A~>~S =1
To samo w zapisie formalnym:
A2: ~p~>~q =1
Nie wciśnięcie A (~A=1) jest (=1) warunkiem koniecznym ~> dla świecenia żarówki S (S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Jak widzimy, prawo Kubusia samo nam tu wyskoczyło:
A2:~p~>~q = A1: p=>q
lub
Z fałszywości warunku wystarczającego B2: ~p=>~q wynika prawdziwość kontrprzykładu B2’
B2’
~p~~>q = ~p*q =1 – zdarzenie możliwe (=1)
Nasz przykład:
B2’.
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1), gdy przycisk W (zmienna wolna) jest wciśnięty.
Stąd mamy:
Tabela prawdy operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na pytanie o p (kolumna A1B1) oraz o ~p (kolumna A2B2)
| Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
… a jeśli zajdzie ~p?
Kolumna A2B2:
A2: ~p~>~q =1 – zajście ~p jest (=1) konieczne ~> dla zajścia ~q
Na mocy prawa Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Doskonale widać że:
Po stronie p mamy tu gwarancję matematyczną =>, zaś po stronie ~p mamy „rzucanie monetą” w sensie na „dwoje babka wróżyła”
AAAAAAAAAAAAAAA
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
| Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Podstawowe prawa logiki matematycznej w algebrze Kubusia (2.6):
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
B1: p~>q = B3: q=>p
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
B3: q=>p = B2: ~p=>~q
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
A3: q~>p = A2: ~p~>~q
B1: p~>q = B4: ~q~>~p
10.1 Implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
| Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań
10.2 Implikacja prosta A|=>S w laboratorium fizyki
Fizyczna realizacja implikacji prostej p|=>q w laboratorium fizyki to zaledwie 3 elementy.
Przyciski A i W połączone równolegle sterujące żarówką S gdzie:
p=A – zmienna związana
W – zmienna wolna
q=S Żarówka S (wyjście)
| Kod: |
S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
IP
Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1
Czytamy:
Implikacja prosta A|=>S jest spełniona (=1) wtedy i tylko wtedy gdy wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (A1) i nie jest (=0) warunkiem koniecznym ~> dla świecenia żarówki S (B1)
Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
| Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa Kłapouchego to:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: A=>S =1 = 2:~A~>~S =1 [=] 3: S~>A =1 = 4:~S=>~A =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki
Analiza skrócona układu S1
| Kod: |
S1 Schemat 1
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Operator implikacji prostej A||=>S w logice to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S) - co się stanie jeśli wciśniemy A (A=1)?
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli nie wciśniemy A (~A=1)?
Kolumna A1B1:
Co może się wydarzyć, jeśli przycisk A jest wciśnięty (A=1)?
A1.
Wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S
A=>S =1
To samo w zapisie formalnym:
p=A (przycisk A)
q=S (żarówka S)
p=>q =1
Stan zmiennej wolnej W jest tu nieistotny
Z prawdziwości warunku wystarczającego A1: A=>S wynika fałszywość kontrprzykładu A1’.
A1’.
A~~>~S = A*~S =0
To samo w zapisie formalnym:
p~~>~q =0
Niemożliwe jest (=0) zdarzenie: przycisk jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Co może się wydarzyć, jeśli przycisk A nie jest wciśnięty (~A=1)?
Idziemy do kolumny A2B2:
A2.
~A~>~S =1
To samo w zapisie formalnym:
A2: ~p~>~q =1
Nie wciśnięcie A (~A=1) jest (=1) warunkiem koniecznym ~> dla świecenia żarówki S (S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Jak widzimy, prawo Kubusia samo nam tu wyskoczyło:
A2:~p~>~q = A1: p=>q
lub
Z fałszywości warunku wystarczającego B2: ~p=>~q wynika prawdziwość kontrprzykładu B2’
B2’
~p~~>q = ~p*q =1 – zdarzenie możliwe (=1)
Nasz przykład:
B2’.
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1), gdy przycisk W (zmienna wolna) jest wciśnięty.
Stąd mamy:
Tabela prawdy operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na pytanie o p (kolumna A1B1) oraz o ~p (kolumna A2B2)
| Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
… a jeśli zajdzie ~p?
Kolumna A2B2:
A2: ~p~>~q =1 – zajście ~p jest (=1) konieczne ~> dla zajścia ~q
Na mocy prawa Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Doskonale widać że:
Po stronie p mamy tu gwarancję matematyczną =>, zaś po stronie ~p mamy „rzucanie monetą” w sensie na „dwoje babka wróżyła”
BBBB
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
| Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Podstawowe prawa logiki matematycznej w algebrze Kubusia (2.6):
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
B1: p~>q = B3: q=>p
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
B3: q=>p = B2: ~p=>~q
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
A3: q~>p = A2: ~p~>~q
B1: p~>q = B4: ~q~>~p
10.1 Implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
| Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań
10.2 Implikacja prosta A|=>S w laboratorium fizyki
Fizyczna realizacja implikacji prostej p|=>q w laboratorium fizyki to zaledwie 3 elementy.
Przyciski A i W połączone równolegle sterujące żarówką S gdzie:
p=A – zmienna związana
W – zmienna wolna
q=S Żarówka S (wyjście)
| Kod: |
S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
IP
Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1
Czytamy:
Implikacja prosta A|=>S jest spełniona (=1) wtedy i tylko wtedy gdy wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (A1) i nie jest (=0) warunkiem koniecznym ~> dla świecenia żarówki S (B1)
Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
| Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa Kłapouchego to:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: A=>S =1 = 2:~A~>~S =1 [=] 3: S~>A =1 = 4:~S=>~A =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki
Analiza skrócona układu S1
| Kod: |
S1 Schemat 1
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Operator implikacji prostej A||=>S w logice to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S) - co się stanie jeśli wciśniemy A (A=1)?
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli nie wciśniemy A (~A=1)?
Kolumna A1B1:
Co może się wydarzyć, jeśli przycisk A jest wciśnięty (A=1)?
A1.
Wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S
A=>S =1
To samo w zapisie formalnym:
p=A (przycisk A)
q=S (żarówka S)
p=>q =1
Stan zmiennej wolnej W jest tu nieistotny
Z prawdziwości warunku wystarczającego A1: A=>S wynika fałszywość kontrprzykładu A1’.
A1’.
A~~>~S = A*~S =0
To samo w zapisie formalnym:
p~~>~q =0
Niemożliwe jest (=0) zdarzenie: przycisk jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Co może się wydarzyć, jeśli przycisk A nie jest wciśnięty (~A=1)?
Idziemy do kolumny A2B2:
A2.
~A~>~S =1
To samo w zapisie formalnym:
A2: ~p~>~q =1
Nie wciśnięcie A (~A=1) jest (=1) warunkiem koniecznym ~> dla świecenia żarówki S (S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Jak widzimy, prawo Kubusia samo nam tu wyskoczyło:
A2:~p~>~q = A1: p=>q
lub
Z fałszywości warunku wystarczającego B2: ~p=>~q wynika prawdziwość kontrprzykładu B2’
B2’
~p~~>q = ~p*q =1 – zdarzenie możliwe (=1)
Nasz przykład:
B2’.
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1), gdy przycisk W (zmienna wolna) jest wciśnięty.
Stąd mamy:
Tabela prawdy operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na pytanie o p (kolumna A1B1) oraz o ~p (kolumna A2B2)
| Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
… a jeśli zajdzie ~p?
Kolumna A2B2:
A2: ~p~>~q =1 – zajście ~p jest (=1) konieczne ~> dla zajścia ~q
Na mocy prawa Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Doskonale widać że:
Po stronie p mamy tu gwarancję matematyczną =>, zaś po stronie ~p mamy „rzucanie monetą” w sensie na „dwoje babka wróżyła”
CCCCC
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
| Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Podstawowe prawa logiki matematycznej w algebrze Kubusia (2.6):
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
B1: p~>q = B3: q=>p
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
B3: q=>p = B2: ~p=>~q
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
A3: q~>p = A2: ~p~>~q
B1: p~>q = B4: ~q~>~p
10.1 Implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
| Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań
10.2 Implikacja prosta A|=>S w laboratorium fizyki
Fizyczna realizacja implikacji prostej p|=>q w laboratorium fizyki to zaledwie 3 elementy.
Przyciski A i W połączone równolegle sterujące żarówką S gdzie:
p=A – zmienna związana
W – zmienna wolna
q=S Żarówka S (wyjście)
| Kod: |
S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
IP
Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1
Czytamy:
Implikacja prosta A|=>S jest spełniona (=1) wtedy i tylko wtedy gdy wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (A1) i nie jest (=0) warunkiem koniecznym ~> dla świecenia żarówki S (B1)
Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
| Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa Kłapouchego to:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: A=>S =1 = 2:~A~>~S =1 [=] 3: S~>A =1 = 4:~S=>~A =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki
Analiza skrócona układu S1
| Kod: |
S1 Schemat 1
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Operator implikacji prostej A||=>S w logice to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S) - co się stanie jeśli wciśniemy A (A=1)?
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli nie wciśniemy A (~A=1)?
Kolumna A1B1:
Co może się wydarzyć, jeśli przycisk A jest wciśnięty (A=1)?
A1.
Wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S
A=>S =1
To samo w zapisie formalnym:
p=A (przycisk A)
q=S (żarówka S)
p=>q =1
Stan zmiennej wolnej W jest tu nieistotny
Z prawdziwości warunku wystarczającego A1: A=>S wynika fałszywość kontrprzykładu A1’.
A1’.
A~~>~S = A*~S =0
To samo w zapisie formalnym:
p~~>~q =0
Niemożliwe jest (=0) zdarzenie: przycisk jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Co może się wydarzyć, jeśli przycisk A nie jest wciśnięty (~A=1)?
Idziemy do kolumny A2B2:
A2.
~A~>~S =1
To samo w zapisie formalnym:
A2: ~p~>~q =1
Nie wciśnięcie A (~A=1) jest (=1) warunkiem koniecznym ~> dla świecenia żarówki S (S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Jak widzimy, prawo Kubusia samo nam tu wyskoczyło:
A2:~p~>~q = A1: p=>q
lub
Z fałszywości warunku wystarczającego B2: ~p=>~q wynika prawdziwość kontrprzykładu B2’
B2’
~p~~>q = ~p*q =1 – zdarzenie możliwe (=1)
Nasz przykład:
B2’.
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1), gdy przycisk W (zmienna wolna) jest wciśnięty.
Stąd mamy:
Tabela prawdy operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na pytanie o p (kolumna A1B1) oraz o ~p (kolumna A2B2)
| Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
… a jeśli zajdzie ~p?
Kolumna A2B2:
A2: ~p~>~q =1 – zajście ~p jest (=1) konieczne ~> dla zajścia ~q
Na mocy prawa Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Doskonale widać że:
Po stronie p mamy tu gwarancję matematyczną =>, zaś po stronie ~p mamy „rzucanie monetą” w sensie na „dwoje babka wróżyła”
DDDD
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
| Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Podstawowe prawa logiki matematycznej w algebrze Kubusia (2.6):
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
B1: p~>q = B3: q=>p
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
B3: q=>p = B2: ~p=>~q
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
A3: q~>p = A2: ~p~>~q
B1: p~>q = B4: ~q~>~p
10.1 Implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Prawą stronę czytamy:
Zajście p jest (=1) wystarczające => dla zajścia q (A1), ale nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
| Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań
10.2 Implikacja prosta A|=>S w laboratorium fizyki
Fizyczna realizacja implikacji prostej p|=>q w laboratorium fizyki to zaledwie 3 elementy.
Przyciski A i W połączone równolegle sterujące żarówką S gdzie:
p=A – zmienna związana
W – zmienna wolna
q=S Żarówka S (wyjście)
| Kod: |
S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
IP
Definicja implikacji prostej A|=>S w logice dodatniej (bo S):
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1
Czytamy:
Implikacja prosta A|=>S jest spełniona (=1) wtedy i tylko wtedy gdy wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (A1) i nie jest (=0) warunkiem koniecznym ~> dla świecenia żarówki S (B1)
Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
| Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa Kłapouchego to:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: A=>S =1 = 2:~A~>~S =1 [=] 3: S~>A =1 = 4:~S=>~A =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki
Analiza skrócona układu S1
| Kod: |
S1 Schemat 1
W
______
-----o o-----
S | A |
------------- | ______ |
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Operator implikacji prostej A||=>S w logice to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S) - co się stanie jeśli wciśniemy A (A=1)?
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli nie wciśniemy A (~A=1)?
Kolumna A1B1:
Co może się wydarzyć, jeśli przycisk A jest wciśnięty (A=1)?
A1.
Wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S
A=>S =1
To samo w zapisie formalnym:
p=A (przycisk A)
q=S (żarówka S)
p=>q =1
Stan zmiennej wolnej W jest tu nieistotny
Z prawdziwości warunku wystarczającego A1: A=>S wynika fałszywość kontrprzykładu A1’.
A1’.
A~~>~S = A*~S =0
To samo w zapisie formalnym:
p~~>~q =0
Niemożliwe jest (=0) zdarzenie: przycisk jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Co może się wydarzyć, jeśli przycisk A nie jest wciśnięty (~A=1)?
Idziemy do kolumny A2B2:
A2.
~A~>~S =1
To samo w zapisie formalnym:
A2: ~p~>~q =1
Nie wciśnięcie A (~A=1) jest (=1) warunkiem koniecznym ~> dla świecenia żarówki S (S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Jak widzimy, prawo Kubusia samo nam tu wyskoczyło:
A2:~p~>~q = A1: p=>q
lub
Z fałszywości warunku wystarczającego B2: ~p=>~q wynika prawdziwość kontrprzykładu B2’
B2’
~p~~>q = ~p*q =1 – zdarzenie możliwe (=1)
Nasz przykład:
B2’.
~A~~>S = ~A*S =1
Możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1), gdy przycisk W (zmienna wolna) jest wciśnięty.
Stąd mamy:
Tabela prawdy operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na pytanie o p (kolumna A1B1) oraz o ~p (kolumna A2B2)
| Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
… a jeśli zajdzie ~p?
Kolumna A2B2:
A2: ~p~>~q =1 – zajście ~p jest (=1) konieczne ~> dla zajścia ~q
Na mocy prawa Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Doskonale widać że:
Po stronie p mamy tu gwarancję matematyczną =>, zaś po stronie ~p mamy „rzucanie monetą” w sensie na „dwoje babka wróżyła”
EEEE
Spis treści
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO 1
10.1 Implikacja prosta p|=>q 1
10.2 Implikacja prosta A|=>S w laboratorium fizyki 2
10.2.1 Operator implikacji prostej A||=>S w laboratorium fizyki 4
10.0 Algebra Kubusia w laboratorium fizyki w I klasie LO
Algebra Kubusia w laboratorium fizyki w I klasie LO to sterowanie świeceniem żarówki S co najwyżej trzema przyciskami w różnych układach połączeń
Ostatnio zmieniony przez rafal3006 dnia Śro 7:58, 01 Paź 2025, w całości zmieniany 2073 razy
|
|
| Powrót do góry |
|
 |
|
|
 |
| Zobacz poprzedni temat :: Zobacz następny temat |
| Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 39886
Przeczytał: 9 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 19:53, 31 Paź 2020 Temat postu: |
|
|
...
Ostatnio zmieniony przez rafal3006 dnia Nie 8:59, 01 Lis 2020, w całości zmieniany 1 raz
|
|
| Powrót do góry |
|
 |
| Zobacz poprzedni temat :: Zobacz następny temat |
| Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 39886
Przeczytał: 9 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 23:49, 31 Paź 2020 Temat postu: |
|
|
....
Ostatnio zmieniony przez rafal3006 dnia Nie 9:00, 01 Lis 2020, w całości zmieniany 1 raz
|
|
| Powrót do góry |
|
 |
| Zobacz poprzedni temat :: Zobacz następny temat |
| Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 39886
Przeczytał: 9 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 12:35, 22 Maj 2021 Temat postu: Re: Śmieci |
|
|
...
Ostatnio zmieniony przez rafal3006 dnia Śro 13:06, 29 Cze 2022, w całości zmieniany 2 razy
|
|
| Powrót do góry |
|
 |
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|