Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - Aksjomatyka języka mówionego

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32685
Przeczytał: 43 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 20:35, 08 Paź 2017    Temat postu: Algebra Kubusia - Aksjomatyka języka mówionego

Algebra Kubusia - Aksjomatyka języka mówionego




Kubuś i przyjaciele w drodze ku świetlanej przyszłości


Spis treści
1.0 Aksjomatyka języka mówionego 1
1.1 Najważniejsze prawa algebry Kubusia 2
1.2 Warunek wystarczający => i konieczny ~> w rachunku zero-jedynkowym 4
1.3 Paradoks w równoważności - wyjaśnienie 7
1.4 Paradoks w implikacji prostej - wyjaśnienie 12
2.0 Zdanie zawsze prawdziwe - największa tragedia matematyków 19
2.1 Zdanie zawsze prawdziwe vs równoważność p<=>q 21
2.2 Zdanie zawsze prawdziwe vs implikacja prosta p|=>q 23
3.0 Równania alternatywno-koniunkcyjne i koniunkcyjno-alternatywne 27


4.0 Operatory implikacyjne w zbiorach

4.0 Operatory implikacyjne w zbiorach 1
4.1 Definicje spójników implikacyjnych =>, ~> i ~~> w zbiorach 3
4.2 Operator implikacji prostej |=> w zbiorach 5
4.3 Operator implikacji odwrotnej p|~>q w zbiorach 7
4.4 Operator chaosu |~~> w zbiorach 9
4.5 Operator równoważności p<=>q w zbiorach 11
5.0 Spójniki implikacyjne w rachunku zero-jedynkowym 13
5.1 Operatory logiczne w rachunku zero-jedynkowym 16
5.2 Wyprowadzenie symbolicznych definicji operatorów implikacyjnych 18


1.0 Aksjomatyka języka mówionego

Niezależna od jakiegokolwiek języka używanego przez człowieka.
Bez znaczenia jest czy będzie to język Buszmeński, Polski czy Chiński.

Zdania warunkowe „Jeśli p to q” to fundament logiki matematycznej.

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>
1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony (=1) gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
Definicja podzbioru =>:
p=>q =1
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q
Przynależność dowolnego elementu do zbioru p jest warunkiem wystarczającym => aby ten element należał do zbioru q
Wymuszam dowolny element ze zbioru p i mam gwarancję matematyczną => iż ten element znajduje się w zbiorze q
2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony (=1) gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
Definicja nadzbioru ~>:
p~>q =1
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
Zabieram wszystkie p i znika mi zbiór q
Zabieram kompletny zbiór p i znika mi kompletny zbiór q
3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*q =1 - definicja kwantyfikatora małego spełniona (=1) gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)

Uwaga!
Żadne inne znaczki w obsłudze zdań warunkowych „Jeśli p to q” nie są używane.

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>

Prawo Kobry wynika bezpośrednio z definicji znaczków =>, ~> i ~~> podanych wyżej.


1.1 Najważniejsze prawa algebry Kubusia

Prawa Kubusia wiążące warunek wystarczający => z warunkiem koniecznym ~> bez zamiany p i q:

I prawo Kubusia:
Warunek wystarczający p=>q w logice dodatniej (bo q) jest tożsamy z warunkiem konicznym ~p~>~q w logice ujemnej (bo ~q)
p=>q = ~p~>~q

II Prawo Kubusia:
Warunek konieczny p~>q w logice dodatniej (bo q) jest tożsamy z warunkiem wystarczającym ~p=>~q w logice ujemnej (bo ~q)
p~>q = ~p=>~q

Matematyczna interpretacja dowolnego prawa logicznego:
I prawo Kubusia:
p=>q = ~p~>~q
Prawdziwość dowolnej strony równania logicznego wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony równania logicznego wymusza fałszywość drugiej strony

Przykład pozytywny:
P8=>P2 = ~P8~>~P2
Wystarczy udowodnić prawdziwość warunku wystarczającego z lewej strony P8=>P2=1 aby mieć pewność zachodzenia warunku koniecznego ~> z prawej strony ~P8~>~P2=1
P8=>P2 =1
Definicja warunku wystarczającego => spełniona (=1) bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Przykład negatywny:
P2=>P8 = ~P2~>~P8
Wystarczy udowodnić fałszywość warunku wystarczającego z lewej strony P2=>P8=0, aby mieć pewność fałszywości warunku koniecznego z prawej strony ~P2~>~P8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P2=[2,,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]

Prawa Tygryska wiążące warunek wystarczający => z warunkiem koniecznym ~> z zamianą p i q:
I prawo Tygryska:
p=>q [=] q~>p
II prawo Tygryska:
p~>q [=] q=>p

Prawa kontrapozycji:
I prawo kontrapozycji:
p=>q [=] ~q=>~p
II prawo Kontrapozycji:
~p=>~q [=] q=>p

Notacja:
Korzystanie z praw Kubusia zaznaczamy znakiem tożsamości logicznej „=”, natomiast korzystanie z praw Tygryska zaznaczamy znakiem tożsamości logicznej [=].
Oba znaki to znaki tożsamości logicznej, różnica interpretacyjna jest w implikacjach czasowych, co w niedalekiej przyszłości pokażemy.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q=p*~q

Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Prawo Kłapouchego:
Kolejność wykonywania działań w logice człowieka:
„i”(*), „lub”(+), warunek wystarczający =>, warunek konieczny ~>
Człowiek w logice matematycznej pod którą podlega, algebrze Kubusia, nie widzi nawiasów, zatem nie rozumie równań koniunkcyjno-alternatywnych.
Dowód: punkt 3.0


1.2 Warunek wystarczający => i konieczny ~> w rachunku zero-jedynkowym

Kod:

Definicja zero-jedynkowa warunku wystarczającego p=>q:
   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Kod:

Definicja zero-jedynkowa warunku koniecznego p~>q:
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0

Matematyczne związki warunku wystarczającego => i koniecznego ~> w rachunku zero-jedynkowym są następujące.
Kod:

Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q q~>p=q+~p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =0    =0    =0    =0    =0        =0
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =1    =1    =1    =1    =1        =1
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Prawa matematyczne odczytane z powyższej tabeli to:
1A.
Definicja warunku wystarczającego => w spójnikach „lub”(+) i „i”(*):
p=>q = ~p+q
2A.
I Prawo Kubusia:
p=>q = ~p~>~q
Dowód I prawa Kubusia w rachunku zero-jedynkowym to tożsamość kolumn wynikowych 5=6
Ten sam dowód w równaniach algebry Kubusia:
Definicje:
p=>q = ~p+q
p~>q = p+~q
I Prawo Kubusia:
p=>q = ~p~>~q
Dowód:
~p~>~q = ~p+~(~q) = ~p+q = p=>q
cnd
3A.
I Prawo Tygryska:
p=>q [=] q~>p
Dowód I prawa Tygryska w rachunku zero-jedynkowym to tożsamość kolumn 5=7
Ten sam dowód w równaniach algebry Kubusia:
Definicje:
p=>q = ~p+q
p~>q = p+~q
I Prawo Tygryska:
p=>q [=] q~>p
Dowód:
q~>p = q+~p = ~p+q [=] p=>q
cnd
4A.
I prawo kontrapozycji:
p=>q = ~q=>~p
Dowód I prawa Kontrapozycji w rachunku zero-jedynkowym to tożsamość kolumn 5=8
Ten sam dowód w równaniach algebry Kubusia:
Definicja:
p=>q = ~p+q
Prawo kontrapozycji:
~q=>~p = ~(~q)+~p = ~p+q = p=>q
cnd
Kod:

Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q q=>p=~q+p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =1    =1    =1    =1    =1        =1
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =0    =0    =0    =0    =0        =0
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q
Prawa matematyczne odczytane z powyższej tabeli to:
1B.
Definicja warunku koniecznego ~> w spójnikach „lub”(+) i „i”(*):
p~>q = p+~q
2B.
II Prawo Kubusia:
p~>q = ~p=>~q
Dowód II prawa Kubusia w rachunku zero-jedynkowym to tożsamość kolumn wynikowych 5=6
Ten sam dowód w równaniach algebry Kubusia:
Definicje:
p=>q = ~p+q
p~>q = p+~q
II Prawo Kubusia:
p~>q = ~p=>~q
Dowód:
~p=>~q = ~(~p)+~q = p+~q = p~>q
cnd
3B.
II Prawo Tygryska:
p~>q [=] q=>p
Dowód II prawa Tygryska w rachunku zero-jedynkowym to tożsamość kolumn 5=7
Ten sam dowód w równaniach algebry Kubusia:
Definicje:
p=>q = ~p+q
p~>q = p+~q
II Prawo Tygryska:
p~>q [=] q=>p
Dowód:
q=>p = ~q+p = p+~q [=] p~>q
cnd
4B.
II prawo kontrapozycji
~p=>~q = q=>p
Dowód II prawa Kontrapozycji w rachunku zero-jedynkowym to tożsamość kolumn 6=7
Ten sam dowód w równaniach algebry Kubusia:
Definicja:
p=>q = ~p+q
Prawo kontrapozycji:
~p=>~q = ~(~p)+~q = ~q+p = q=>p
cnd

Jak zapamiętać schematy równań T1 i T2?
Rano, wieczór, we dnie, w nocy każdy matematyk musi pamiętać prawa matematyczne wiążące warunek wystarczający => i konieczny ~> bez zamiany p i q:
Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q
Interpretacja dowolnego prawa logicznego:
Prawdziwość dowolnej strony wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony wymusza fałszywość drugiej strony
Przykład:
P8=>P2 = ~P2~>~P2 =1 - bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
P2=>P8 = ~P2~>~P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => P8=[8,16,24..]

Dowód praw Kubusia widać w tabeli zero-jedynkowej wyżej - tożsamość kolumn wynikowych.

Podobnie:
Rano, wieczór, we dnie, w nocy każdy matematyk musi pamiętać prawa wiążące warunek wystarczający => i konieczny ~> przy zamianie p i q.

Prawa Tygryska:
p=>q [=] q~>p
p~>q [=] q=>p
Przykład:
P8=>P2 [=] P2~>P8
P2~>P8 [=] P8=>P2
Dowód praw Tygryska widać w tabeli zero-jedynkowej wyżej - tożsamość kolumn wynikowych.

Notacja:
Korzystanie z praw Kubusia zaznaczamy znakiem tożsamości logicznej „=”, natomiast korzystanie z praw Tygryska zaznaczamy znakiem tożsamości logicznej [=].
Oba znaki to znaki tożsamości logicznej, różnica interpretacyjna jest w implikacjach czasowych, co w niedalekiej przyszłości pokażemy.

Jeśli pamiętamy prawa Kubusia i prawa Tygryska to na podstawie dowolnego zdania warunkowego „Jeśli p to q” z łatwością wygenerujemy zarówno równanie T1 jak i równanie T2.

Dowód dla warunku wystarczającego T11: p=>q:
T1: 1: p=>q= 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p
Komentarz:
T11=T12 - prawo Kubusia
T11[=]T13 - prawo Tygryska
T13=T14 - prawo Kubusia

Identycznie mamy dla warunku koniecznego T21: p~>q:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
Komentarz:
T21=T22 - prawo Kubusia
T21[=]T23 - prawo Tygryska
T23=T24 - prawo Kubusia

Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p ## T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
gdzie:
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Definicja znaczka ## różne na mocy definicji:
Dwie kolumny wynikowe X i Y są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame ((X=Y)=0) oraz żadna z nich nie jest zaprzeczeniem drugiej ((X=~Y)=0)
X ## Y = ~(X=Y)*~(X=~Y) = ~(0)*~(0) = 1*1 =1
Zauważmy że tabela 1 i tabela 2 spełnia definicję znaczka ## różne na mocy definicji.


1.3 Paradoks w równoważności - wyjaśnienie

Zdania warunkowe „Jeśli p to q” to fundament logiki matematycznej.

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>

1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony (=1) gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
Definicja podzbioru =>:
p=>q =1
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q
Przynależność dowolnego elementu do zbioru p jest warunkiem wystarczającym => aby ten element należał do zbioru q
Wymuszam dowolny element ze zbioru p i mam gwarancję matematyczną => iż ten element znajduje się w zbiorze q
2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony (=1) gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
Definicja nadzbioru ~>:
p~>q =1
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
Zabieram wszystkie p i znika mi zbiór q
Zabieram kompletny zbiór p i znika mi kompletny zbiór q
3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*q =1 - definicja kwantyfikatora małego spełniona (=1) gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)

Uwaga!
Żadne inne znaczki w obsłudze zdań warunkowych „Jeśli p to q” nie są używane.

Równoważność p<=>q
Kod:

Definicja zero-jedynkowa warunku wystarczającego p=>q:
   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Kod:

Definicja zero-jedynkowa warunku koniecznego p~>q:
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0

Matematyczne związki warunku wystarczającego => i koniecznego ~> w rachunku zero-jedynkowym są następujące.
Kod:

Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q q~>p=q+~p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =0    =0    =0    =0    =0        =0
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =1    =1    =1    =1    =1        =1
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Kod:

Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q q=>p=~q+p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =1    =1    =1    =1    =1        =1
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =0    =0    =0    =0    =0        =0
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q

Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p ## T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
gdzie:
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Definicja znaczka ## różne na mocy definicji:
Dwie kolumny wynikowe X i Y są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame ((X=Y)=0) oraz żadna z nich nie jest zaprzeczeniem drugiej ((X=~Y)=0)
X ## Y = ~(X=Y)*~(X=~Y) = ~(0)*~(0) = 1*1 =1
Zauważmy że tabela 1 i tabela 2 spełnia definicję znaczka ## różne na mocy definicji.

Podstawowa definicja równoważności w warunkach wystarczającym => i koniecznym ~>:
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami
p=>q =1 - zbiór p jest podzbiorem => zbioru q
p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q
Definicja równoważności w równaniu algebry Kubusia:
p<=>q = T1: (p=>q)* T2: (p~>q) = 1*1 =1

Rozwijając T1 i T2 mamy kompletne równanie równoważności w warunkach wystarczającym => i koniecznym ~>:
p<=>q = (T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4. ~q=>~p) * (T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p)
Doskonale widać, że możemy wygenerować 16 tożsamych definicji równoważności w warunkach wystarczającym => i koniecznym ~>.
Najpopularniejsze to:
I.
Definicja równoważności (święta krowa matematyków):

Równoważność to pewne wynikanie => w dwie strony:
p<=>q = T11: (p=>q)* T23: (q=>p)
II.
Równoważność podstawowa:

Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami:
p<=>q = T11: (p=>q)* T21: (p~>q)
III.
Równoważność aksjomatyczna:

Wynikająca bezpośrednio z tabeli zero-jedynkowej równoważności p<=>q:
p<=>q = T11: (p=>q)* T22: (~p=>~q)

Dlaczego ziemscy matematycy nie znają wszystkich 16, tożsamych definicji równoważności?
Odpowiedź:
Bo gówno zwane implikacją materialną doszczętnie sprało ziemskim matematykom mózgi.

Cześć I

Największą tajemnicę logiki matematycznej rozpatrzymy na przykładzie twierdzenia Pitagorasa.
Weźmy definicję równoważności (świętą krowę ziemskich matematyków):
p<=>q = T11: (p=>q)* T23: (q=>p)

Podstawiamy twierdzenie Pitagorasa:
TP<=>SK = T11: (TP=>SK)* T23: (SK=>TP)
Na mocy definicji zachodzi:
TP<=>SK ## T11: (TP=>SK) ## T23: (SK=>TP)
## - różne na mocy definicji
Gdzie jest wyjaśnienie o co chodzi ze znaczkiem ## w logice matematycznej ziemian (patrz tabele zero-jedynkowe wyżej - różność kolumn wynikowych w T1 i T2)?
NIE MA!
Dlaczego nie ma?
Bo gówno zwane implikacją materialną doszczętnie sprało ziemskim matematykom mózgi.

Zapiszmy jeszcze raz równanie ogólne równoważności:
p<=>q = (T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4. ~q=>~p) * (T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p)
Oczywistym jest że w całym równaniu dla twierdzenie Pitagorasa mamy:
p=TP
q=SK
inaczej gwałcimy prawo podstawienia.

Podstawmy twierdzenie Pitagorasa do powyższego równania:
TP<=>SK = (T1: 1: TP=>SK = 2: ~TP~>~SK [=] 3: SK~>TP = 4. ~SK=>~TP) * (T2: 1: TP~>SK = 2: ~TP=>~SK [=] 3: SK=>TP = 4: ~SK~>~TP)

… i teraz uwaga!

Wypowiedzmy kluczowe dla naszego paradoksu zdanie T23:
T23:
Jeśli w trójkącie zachodzi suma kwadratów to na 100% ten trójkąt jest prostokątny
T23: SK=>TP =1
Definicja warunku wystarczającego => spełniona (=1) bo wymuszam dowolny trójkąt w którym zachodzi suma kwadratów SK=1 i na 100% trójkąt ten będzie trójkątem prostokątnym TP=1
Definicja warunku wystarczającego => spełniona z powodu tożsamości zbiorów SK=TP (która to tożsamość wymusza tożsamość ~SK=~TP)

Prawo Ślimaka:
Każdy zbiór jest podzbiorem => siebie samego.

Wypowiedzmy drugie kluczowe zdanie dla naszego paradoksu T13!
T13: SK~>TP
T13:
Jeśli w trójkącie zachodzi suma kwadratów to na 100% ten trójkąt jest prostokątny
T13: SK~>TP =1
Definicja warunku koniecznego ~> spełniona, bo zabieram kompletny zbiór SK i na 100% zniknie mi zbiór TP (z powodu tożsamości zbiorów SK=TP)

Prawo Ślimaka:
Każdy zbiór jest nadzbiorem ~> siebie samego.

Kwadratura koła dla ziemskich matematyków:
Oczywistym jest że na mocy definicji zachodzi:
T23: q=>p ## T13: q~>p
T23: SK=>TP ## T13: SK~>TP
## - różne na mocy definicji

Matematyczny paradoks:
Zdania warunkowe „Jeśli p to q” opisujące T23 i T13 są identyczne z dokładnością do każdej literki i każdego przecinka!
… a jednak matematycznie zachodzi (powtórzę):
T23: q=>p ## T13: q~>p
T23: SK=>TP ## T13: SK~>TP
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Z matematyka się nie dyskutuje!
Pozorny paradoks w równoważności wyjaśniają związki między warunkiem wystarczającym T1: p=>q i koniecznym T2: p~>q przedstawione w tabelach zero-jedynkowych T1 i T2 wyżej.
Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p ## T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
gdzie:
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Cześć II

Dokładnie ten sam paradoks pokazany w sposób najprostszy z możliwych.
Równanie ogólne równoważności:
p<=>q = (T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4. ~q=>~p) * (T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p)
Oczywistym jest że w całym równaniu dla twierdzenie Pitagorasa mamy:
p=TP
q=SK
inaczej gwałcimy prawo podstawienia.

Podstawmy twierdzenie Pitagorasa do powyższego równania:
TP<=>SK = (T1: 1: TP=>SK = 2: ~TP~>~SK [=] 3: SK~>TP = 4. ~SK=>~TP) * (T2: 1: TP~>SK = 2: ~TP=>~SK [=] 3: SK=>TP = 4: ~SK~>~TP)

Wypowiedzmy zdanie T11:
T11.
Jeśli trójkąt jest prostokątny to na 100% zachodzi w nim suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => spełniona, bo wymuszam dowolny trójkąt prostokątny TP=1 i na 100% w tym trójkącie będzie zachodziła suma kwadratów.
Oczywistość z powodu tożsamości zbiorów TP=SK

Prawo Ślimaka:
Każdy zbiór jest podzbiorem => siebie samego

Wypowiedzmy zdanie T21:
T21.
Jeśli trójkąt jest prostokątny to na 100% zachodzi w nim suma kwadratów
TP~>SK =1
Definicja warunku koniecznego ~> spełniona, bo zabieram kompletny zbiór TP i znika mi zbiór SK.
Oczywistość z powodu tożsamości zbiorów TP=SK
Prawo ślimaka:
Każdy zbiór jest nadzbiorem ~> siebie samego, kto tego nie wie jest Idiotą

Kwadratura koła dla ziemskich matematyków:
Oczywistym jest, że na mocy definicji zachodzi:
T11: p=>q ## T21: p~>q
T11: TP=>SK ## T21: TP~>SK
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Matematyczny paradoks:
Zdania warunkowe „Jeśli p to q” opisujące T11 i T21 są identyczne z dokładnością do każdej literki i każdego przecinka!
… a jednak matematycznie zachodzi (powtórzę):
T11: p=>q ## T21: p~>q
T11: TP=>SK ## T21: TP~>SK
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Z matematyka się nie dyskutuje!
Pozorny paradoks w równoważności wyjaśniają związki między warunkiem wystarczającym T1: p=>q i koniecznym T2: p~>q przedstawione w tabelach zero-jedynkowych T1 i T2 wyżej.
Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p ## T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
gdzie:
## - różne na mocy definicji (bo kolumny wynikowe są różne)


1.4 Paradoks w implikacji prostej - wyjaśnienie

Zdania warunkowe „Jeśli p to q” to fundament logiki matematycznej.

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>

1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony (=1) gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
Definicja podzbioru =>:
p=>q =1
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q
Przynależność dowolnego elementu do zbioru p jest warunkiem wystarczającym => aby ten element należał do zbioru q
Wymuszam dowolny element ze zbioru p i mam gwarancję matematyczną => iż ten element znajduje się w zbiorze q
2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony (=1) gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
Definicja nadzbioru ~>:
p~>q =1
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
Zabieram wszystkie p i znika mi zbiór q
Zabieram kompletny zbiór p i znika mi kompletny zbiór q
3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*q =1 - definicja kwantyfikatora małego spełniona (=1) gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)

Uwaga!
Żadne inne znaczki w obsłudze zdań warunkowych „Jeśli p to q” nie są używane.

Implikacja

Kod:

Definicja zero-jedynkowa warunku wystarczającego p=>q:
   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Kod:

Definicja zero-jedynkowa warunku koniecznego p~>q:
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0

Matematyczne związki warunku wystarczającego => i koniecznego ~> w rachunku zero-jedynkowym są następujące.
Kod:

Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q q~>p=q+~p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =0    =0    =0    =0    =0        =0
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =1    =1    =1    =1    =1        =1
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q
Kod:

Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q q=>p=~q+p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =1    =1    =1    =1    =1        =1
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =0    =0    =0    =0    =0        =0
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q

Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p ## T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p
gdzie:
## - różne na mocy definicji (bo kolumny wynikowe są różne)

Definicja znaczka ## różne na mocy definicji:
Dwie kolumny wynikowe X i Y są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame ((X=Y)=0) oraz żadna z nich nie jest zaprzeczeniem drugiej ((X=~Y)=0)
X ## Y = ~(X=Y)*~(X=~Y) = ~(0)*~(0) = 1*1 =1
Zauważmy że tabela 1 i tabela 2 spełnia definicję znaczka ## różne na mocy definicji.

Definicja implikacji prostej p|=>q w warunkach wystarczającym => i koniecznym ~>:
Implikacja prosta p|=>q to spełnienie wyłącznie warunku wystarczającego => między tymi samymi punktami
p=>q =1
p~>q =0
Stąd mamy definicję implikacji prostej p|=>q w równaniu algebry Kubusia:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1

Równanie warunku wystarczającego =>:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =1 - jeśli to jest implikacja prosta p|=>q
Równanie warunku koniecznego ~>:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =0 - jeśli to jest implikacja prosta p|=>q

Podsumowując:
Dla stwierdzenia iż zdanie warunkowe „Jeśli p to q” jest częścią implikacji prostej p|=>q wystarczy udowodnić prawdziwość dowolnego członu T1 i fałszywość dowolnego członu T2.

Wypowiedzmy zdanie T11:
T11.
Jeśli liczba jest podzielna przez 8 to na 100% jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,,4,6,8..]

Wypowiedzmy zdanie T21 z tymi samymi p i q:
T21:
Jeśli liczba jest podzielna przez 8 to może ~> być podzielna przez 2
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Wniosek:
Zdanie wypowiedziane T11 jest częścią implikacji prostej P8|=>P2 co oznacza że:
I.
Wszystkie zdania serii T1 są prawdziwe:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =1
Podstawmy:
p=P8
q=P2
stąd:
T1: 1: P8=>P2 = 2: ~P8=>~P2 [=] 3: P2~>P8 = 4: ~P2=>~P8 =1
II.
Wszystkie zdanie serii T2 są fałszywe:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =0
Podstawmy:
p=P8
q=P2
stąd:
T2: 1: P8~>P2 = 2: ~P8=>~P2 [=] 3: P2=>P8 = 4: ~P2~>~P8 =0

Definicja implikacji odwrotnej p|~>q w warunkach wystarczającym => i koniecznym ~>:
Implikacja odwrotna p|~>q to spełnienie wyłącznie warunku koniecznego ~> między tymi samymi punktami
p=>q =0
p~>q =1
Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu algebry Kubusia:
p|~>q = ~(p=>q*(p~>q) = ~(0)*1 = 1*1 =1

Równanie warunku wystarczającego =>:
T3: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =0 - jeśli to jest implikacja odwrotna p|~>q
Równanie warunku koniecznego ~>:
T4: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =1 - jeśli to jest implikacja odwrotna p|~>q

Podsumowując:
Dla stwierdzenia iż zdanie warunkowe „Jeśli p to q” jest częścią implikacji odwrotnej p|~>q wystarczy udowodnić fałszywość dowolnego członu T3 i prawdziwość dowolnego członu T4.

Wypowiedzmy zdanie T41:
T41.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> spełniona bo zbiór P2=[2,,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

Wypowiedzmy zdanie T31 z tymi samymi p i q:
T31:
Jeśli liczba jest podzielna przez 2 to na 100% jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]

Wniosek:
Zdanie wypowiedziane T41 jest częścią implikacji odwrotnej P2|~>P8 co oznacza że:
I.
Wszystkie zdania serii T3 są fałszywe:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =0
Podstawmy:
p=P2
q=P8
stąd:
T3: 1: P2=>P8 = 2: ~P2=>~P8 [=] 3: P8~>P2 = 4: ~P8=>~P2 =0
II.
Wszystkie zdanie serii T4 są prawdziwe:
T4: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =1
Podstawmy:
p=P2
q=P8
stąd:
T4: 1: P2~>P8 = 2: ~P2=>~P8 [=] 3: P8=>P2 = 4: ~P8~>~P2 =1

Podsumowanie:

Zapiszmy definicje implikacji prostej p|=>q i odwrotnej p|~>q wraz z przykładami jedna pod drugą.

Definicja implikacji prostej p|=>q w warunkach wystarczającym => i koniecznym ~>:
Implikacja prosta p|=>q to spełnienie wyłącznie warunku wystarczającego => między tymi samymi punktami
p=>q =1
p~>q =0
Stąd mamy definicję implikacji prostej p|=>q w równaniu algebry Kubusia:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1

Równanie warunku wystarczającego =>:
T1: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =1 - jeśli to jest implikacja prosta p|=>q
T1: 1: P8=>P2 = 2: ~P8=>~P2 [=] 3: P2~>P8 = 4: ~P2=>~P8 =1
Równanie warunku koniecznego ~>:
T2: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =0 - jeśli to jest implikacja prosta p|=>q
T2: 1: P8~>P2 = 2: ~P8=>~P2 [=] 3: P2=>P8 = 4: ~P2~>~P8 =0

Definicja implikacji odwrotnej p|~>q w warunkach wystarczającym => i koniecznym ~>:
Implikacja odwrotna p|~>q to spełnienie wyłącznie warunku koniecznego ~> między tymi samymi punktami
p=>q =0
p~>q =1
Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu algebry Kubusia:
p|~>q = ~(p=>q*(p~>q) = ~(0)*1 = 1*1 =1

Równanie warunku wystarczającego =>:
T3: 1: p=>q = 2: ~p=>~q [=] 3: q~>p = 4: ~q=>~p =0 - jeśli to jest implikacja odwrotna p|~>q
T3: 1: P2=>P8 = 2: ~P2=>~P8 [=] 3: P8~>P2 = 4: ~P8=>~P2 =0
Równanie warunku koniecznego ~>:
T4: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p =1 - jeśli to jest implikacja odwrotna p|~>q
T4: 1: P2~>P8 = 2: ~P2=>~P8 [=] 3: P8=>P2 = 4: ~P8~>~P2 =1

Załóżmy teraz że ktoś wypowiada zdanie:
A.
Jeśli liczba jest podzielna przez 8 to na 100% jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
W skład jakiego operatora logicznego będzie to zdanie wchodzić?

Zauważmy że zdanie to możemy umieścić na pozycji:
T11: p=>q
T11: P8=>P2 =1 - tu T11 to część implikacji prostej P8|=>P2
albo:
T43: q=>p
T43: P8=>P2 =1 - tu T43 to część implikacji odwrotnej P2|~>P8

Czyżbyśmy zatem mieli do czynienia z niejednoznacznością matematyki ścisłej, bowiem na mocy definicji zachodzi:
P8|=>P2=(P8=>P2)*~(P8~>P2)=1*~(0)=1*1=1 ## P2|~>P8=(P2~>P8)*~(P2=>P8)=1*~(0)=1*1=1
## - różne na mocy definicji

NIE!
Mamy tu do czynienia z nieprawdopodobnie sprytnym układem matematycznym.
Na czym polega ten spryt?

Przykład 1.
Wypowiadamy nowe zdanie:
T1.
Jeśli liczba jest podzielna przez 8 to na 100% jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzie zdanie T1: P8=>P2

Najsprytniejsza sztuczka logiki matematycznej polega na tym że wszystko jedno jest co sobie nazwiemy p a co q!

Operujemy po prostu na zdaniach rzeczywistych a nie na zdaniach w zapisach formalnych!
T1. P8=>P2 = ~P8~>~P2 [=] P2~>P8 = ~P2=>~P8 =1
W równaniu T1 zamieniamy wszędzie znaczek => na ~> i odwrotnie:
T2. P8~>P2 = ~P8=>~P2 [=] P2=>P8 = ~P2~>~P8 =0
W T2 wystarczy udowodnić fałszywość dowolnego członu np.
P8=[8,16,24..]~>P2=[2,4,6,8..] =0 - bo zbiór P8 nie jest nadzbiorem ~> P2
cnd

Stąd mamy gotową odpowiedź:
Nasze zdanie wypowiedziane:
P8=>P2 =1
wchodzi w skład definicji implikacji prostej P8|=>P2:
P8|=>P2 = (P8=>P2)*~(P8~>P2) = 1*~(0) = 1*1 =1
cnd

Przykład 2.
Wypowiadamy nowe zdanie:
T2.
Jeśli liczba nie jest podzielna przez 2 to na 100% nie jest podzielna przez 8
~P2=>~P8 =1
Obliczenia zbiorów:
P2=[2,4,6,8..]
P8=[8,16,24..]
Przyjmujemy dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
~P2=[LN-P2] = [1,3,5,7,9..]
~P8=[LN-P8] = [1,2,3,4,5,6,7..9..]
~P2=>~P8 =1
Definicja warunku wystarczającego => spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..].

Tworzymy równanie zbiorów dla tego zdania:
T2. 1: ~P2=>~P8 = 2: P2~>P8 [=] 3: ~P8~>~P2 = 4: P8=>P2 =1
Komentarz:
T21=T22 - prawo Kubusia
T21[=]T23 - prawo Tygryska
T23=T24 - prawo Kubusia

Oczywistym jest że tożsamość matematyczną możemy dowolnie przestawiać.
Uporządkujmy nasze równanie T2 (nie musimy tego robić!):
T2. P2~>P8 = ~P2=>~P8 [=] P8=>P2 = ~P8~>~P2 =1
Zamieniamy wszędzie znaczek => na ~> i odwrotnie:
T1: P2=>P8 = ~P2~>~P8 [=] P8~>P2 = ~P8=>~P2 =0
Jak udowodnić fałszywość całego wiersza T2?
Wystarczy udowodnić fałszywość dowolnego członu np.
P2=[2,4,6,8..]=>P8=[8,16,24..] =0 - bo zbiór P2 nie jest podzbiorem => zbioru P8
cnd

Podsumowanie:
Cały ten punkt jest co najwyżej na poziomie I klasy LO.
Jeśli przejdziemy na zbiory zrozumiałe dla 5-cio latków np. o piesku i jego czterech łapach to cały ten punkt na 100% będzie zrozumiały dla każdego 5-cio latka!

Dowód:
T1.
Jeśli zwierzę jest psem to na 100% ma cztery łapy
P=>4L =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterem łapami 4L=[pies, słoń, koń ..]

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
p|=>q = (p=>q)*~[p=q]

Nasze zdanie T1 spełnia definicję implikacji prostej P|=>4L w zbiorach:
P|=>4L = (P=>4L)*~[P=4L] = 1*~(0) = 1*1 =1

Stąd z zamkniętymi oczami tworzymy równania warunku wystarczającego => i koniecznego ~> dla zdania T1.
Równanie warunku wystarczającego P=>4L:
T1: P=>4L = ~P~>~4L [=] 4L~>P = ~4L=>~P =1
Równanie warunku koniecznego P~>4L:
T2: P~>4L = ~P=>~4L [=] 4L=>P = ~4L~>~P =0
Aby udowodnić fałszywość wszystkich zdań w linii T2 wystarczy udowodnić fałszywość dowolnego zdania np.
P=[pies]~>4L=[pies, słoń, koń..] =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P=[pies] nie jest nadzbiorem ~> zbioru 4L=[pies, słoń, koń..]

Pewne jest, że każdy 5-cio latek z dziecinną łatwością udowodni prawdziwość każdego zdania z serii T1 oraz fałszywość każdego zdania z serii T2.
Pewne jest że już niedługo, algebrą Kubusia będą się zachwycać wszystkie dzieci we wszystkich przedszkolach świata … takie to proste!


2.0 Zdanie zawsze prawdziwe - największa tragedia matematyków

Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć.
Alfred Hitchcock

Ziemscy matematycy mają błędną definicję zdania zawsze prawdziwego, co udowodnimy w tym punkcie. W logice matematycznej zdanie zawsze prawdziwe to matematyczny gniot bez żadnej gwarancji matematycznej.

Wśród operatorów logicznych zdanie zawsze prawdziwe realizuje wyłącznie operator chaosu p|~~>q


Definicja operatora chaosu |~~> w zbiorach:
Zbiory p i q mają część wspólną i żaden z nich nie zawiera się w drugim
p|~~>q = (p~~>q)*~(p=>q)*~(q=>p) = 1*~(0)*~(0) = 1*1*1 =1
Gdzie:
p~~>q = p*q =1 - istnieje część wspólna zbiorów p i q
p=>q =0 - zbiór p nie jest podzbiorem => zbioru q
q=>p =0 - zbiór q nie jest podzbiorem => zbioru p

Definicja operatora chaosu p|~~>q w spójnikach „lub”(+) i „i”(*):
Kod:

Definicja           |Mintermy    |Co matematycznie   |Definicja
zero-jedynkowa      |            |oznacza            |w spójniku
równoważności       |            |                   |~~>
   p  q ~p ~q  Y ~Y |       Y ~Y |                   |         Y
A: 1  1  0  0  1  0 | p* q =1 =0 | Ya=1<=> p=1 i  q=1| p~~> q =1
B: 1  0  0  1  1  0 | p*~q =1 =0 | Yb=1<=> p=1 i ~q=1| p~~>~q =1
C: 0  0  1  1  1  0 |~p*~q =1 =0 | Yc=1<=>~p=1 i ~q=1|~p~~>~q =1
D: 0  1  1  0  1  0 |~p* q =1 =0 | Yd=1<=>~p=1 i  q=1|~p~~> q =1

Mintermy w Wikipedii:
[link widoczny dla zalogowanych]
Definicja operatora chaosu p|~~~>q w spójnikach „lub”(+) i „i(*) to układ równań logicznych Y i ~Y odczytany z tabeli mintermów (logiki alternatywno-koniunkcyjnej zgodnej z logiką 5-cio latka).
Y = Ya+Yb+Yc+Yd
Po podstawieniu funkcji cząstkowych mamy:
Y = p*q + p*~q + ~p*~q + ~p*q
Dowód iż to jest zdanie zawsze prawdziwe.
Minimalizujemy funkcję logiczną:
Y = p*(q+~q) + ~p*(~q+q)
Y = p+~p =D = 1 - zdanie zawsze prawdziwe w logice dodatniej (bo Y) bowiem zbiór p jest uzupełnieniem do dziedziny D dla zbioru ~p
Jak wygląda funkcja ~Y?
Mamy funkcję Y w wersji minimalnej:
Y = p+~p
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=p*~p =[] =0 - bo zbiory p i ~p są rozłączne

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
Dziedzina:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P3=[3,6,9,12,15..] - zbiór liczb podzielnych przez 3
Obliczenia przeczeń zbiorów:
~P8=[1,2,3,4,5,6,7..9..]
~P3=[1,2..4,5..7,8..]
Zdanie A wchodzi w skład operatora chaosu P8|~~>P3 bo zbiory P8 i P3 mają część wspólną i żaden z nich nie zawiera się w drugim.
P8|~~>P3 = (P8~~>P3)*~(P8=>P3)*~(P3=>~P8) = 1*~(0)*~(0) = 1*1*1 =1
Dowód formalny poprzez analizę wszystkich możliwych przeczeń P8 i P3
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 3
P8~~>~P3 = P8*~P3 =1 bo 8
C.
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 3
~P8~~>~P3 = ~P8*~P3 =1 bo 2
D.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 3
~P8~~>P3 = ~P8*P3 =1 bo 3

Podsumowując:
Doskonale widać, że zdanie zawsze prawdziwe to matematyczny gniot bez żadnej gwarancji matematycznej.


2.1 Zdanie zawsze prawdziwe vs równoważność p<=>q

Weźmy twierdzenie Pitagorasa w spójnikach „lub”(+) i „i”(+):
TP<=>SK = TP*SK + ~TP*~SK

Jeśli skorzystamy z wiedzy, że w twierdzeniu Pitagorasa zachodzi tożsamość zbiorów TP=SK która to tożsamość wymusza kolejną tożsamość ~TP=~SK to mamy zakichane zdanie zawsze prawdziwe ziemskich matematyków:
TP<=>SK = TP*TP + ~TP*~TP = TP+~TP =1

Problem w tym że najwybitniejszy ziemski matematyk nie wie o co tu chodzi tzn. nie rozumie poprawnej logiki matematycznej.

Po pierwsze:
Pełna definicja równoważności p<=>q w spójnikach „lub”(+) i „i”(*) jest następująca:
Y = p<=>q
Kod:

Definicja           |Mintermy    |Co matematycznie   |Definicja
zero-jedynkowa      |            |oznacza            |w spójnikach
równoważności       |            |                   |=> i ~~>
   p  q ~p ~q  Y ~Y |       Y ~Y |                   |
A: 1  1  0  0  1  0 | p* q =1 =0 | Ya=1<=> p=1 i  q=1| p=> q =1
B: 1  0  0  1  0  1 | p*~q =0 =1 |~Yb=1<=> p=1 i ~q=1| p~~>~q=0
C: 0  0  1  1  1  0 |~p*~q =1 =0 | Yc=1<=>~p=1 i ~q=1|~p=>~q =1
D: 0  1  1  0  0  1 |~p* q =0 =1 |~Yd=1<=>~p=1 i  q=1|~p~~>q =0

Mintermy w Wikipedii:
[link widoczny dla zalogowanych]
Definicja równoważności w spójnikach „lub”(+) i „i(*) to układ równań logicznych Y i ~Y odczytany z tabeli mintermów (logiki alternatywno-koniunkcyjnej zgodnej z logiką 5-cio latka).

Definicja dowolnego operatora logicznego w spójnikach „i”(*) i „lub” to układ równań logicznych Y i ~Y:
1.
Y = Ya+Yc
Y = p*q + ~p*~q
co matematycznie oznacza:
Y=1 <=> p=1i q=1 lub ~p=1 i ~q=1
2.
~Y=~Yb+~Yd
~Y=p*~q + ~p*q
co matematycznie oznacza:
~Y=1 <=> p=1 i ~q=1 lub ~p=1 i q=1
Na mocy definicji zachodzi:
Y+~Y = D =1
Y*~Y = [] =0

Po drugie:
W ogólnym przypadku dziedzina dla równoważności p<=>q to
D = Y+~Y
Dowód:
D = p*q + ~p*~q + p*~q + ~p*q
Minimalizujemy:
D = p*(q+~q)+~p*(~q+q)
D = p+~p =1

To jest zakichane zdanie zawsze prawdziwe ziemskich matematyków, czyli gówno-prawda.
Dlaczego to jest gówno-prawda?
Bo w ogólnym przypadku do akcji wkracza 5-cio latek … i pozamiatane!

Pani w przedszkolu:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
K<=>T = K*T + ~K*~T
co matematycznie oznacza:
K<=>T =1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Odczytujemy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
A: K*T = 1*1 =1 - jutro pójdziemy do kina (K=1) lub pójdziemy do teatru (T=1)
lub:
C: ~K*~T = 1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Zuzia do Jasia:
Czy wypowiadając równoważność pani może skłamać?
Jaś:
Ziemscy matematycy błędnie twierdzą, iż równoważność to zdanie zawsze prawdziwe, czyli że pani nie może skłamać, ale to jest oczywista gówno-prawda.
Pani może skłamać a odczytujemy to z równania ~Y w mintermach:
~Y=K*~T + ~K*T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Odczytujemy:
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy:
B: K*~T=1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
lub
D: ~K*T = 1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani skłamie (nie dotrzyma słowa ~Y)

Kwadratura koła dla ziemskich matematyków:
Nie korzystając z wiedzy, iż równoważność opisuje tożsamość zbiorów p=q która to tożsamość wymusza kolejną tożsamość ~p=~q (albo odwrotnie) zminimalizuj funkcję równoważności p<=>q na gruncie tylko i wyłącznie rachunku zero-jedynkowego do zakichanego zdania zawsze prawdziwego.
p<=>q = p*q + ~p*~q
Jeśli dowolny ziemski matematyk tego dokona to kasuję algebrę Kubusia
Inaczej oczywistym jest, że należy skasować calusieńką, aktualną gówno-logikę ziemskich matematyków.


2.2 Zdanie zawsze prawdziwe vs implikacja prosta p|=>q

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem zbioru q i nie jest tożsamy ze zbiorem q
p|=>q = (p=>q)*~[p=q]


Kod:

Definicja symboliczna implikacji prostej p|=>q
A: p=> q =[ p* q= p]=1 - bo zbiór p jest podzbiorem => q
B: p~~>~q=[ p*~q   ]=0 - bo zbiór p jest rozłączny ze zbiorem ~q
C:~p~>~q =[~p*~q=~q]=1 - bo zbiór ~p jest nadzbiorem ~> zbioru ~q
D:~p~~>q =[~p* q   ]=1 - bo zbiór ~p ma część wspólną ze zbiorem q

Gdzie:
p=>q - warunek wystarczający wchodzący w skład definicji implikacji prostej p|=>q

Definicja implikacji prostej p|=>q w warunkach wystarczającym => i koniecznym ~>:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami
p=>q =1
p~>q =0
stąd mamy definicję implikacji prostej p|=>q w równaniu algebry Boole’a:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1
Gdzie:
p|=>q ## p=>q ## p~>q
## - różne na mocy definicji
Ziemianie w swojej gówno-logice błędnie utożsamiają warunek wystarczający p=>q z implikacją prostą p|=>q
Implikacja prosta p|=>q to wszystkie cztery linie ABCD, natomiast warunek wystarczający p=>q to wyłącznie linia A: p=>q.

Pełna definicja implikacji prostej p|=>q w spójnikach „lub”(+) i „i”(*) jest następująca:
Kod:

Definicja           |Mintermy    |Co matematycznie    |Definicja
zero-jedynkowa      |            |oznacza             |W spójnikach
implikacji prostej  |            |                    |implikacyjnych
Y=p|=>q             |            |                    |=>, ~>, ~~>
   p  q ~p ~q  Y ~Y |       Y ~Y |                    |
A: 1  1  0  0  1  0 | p* q =1 =0 | Ya=1<=> p=1 i  q=1 | p=> q =1
B: 1  0  0  1  0  1 | p*~q =0 =1 |~Yb=1<=> p=1 i ~q=1 | p~~>~q=0
C: 0  0  1  1  1  0 |~p*~q =1 =0 | Yc=1<=>~p=1 i ~q=1 |~p~>~q =1
D: 0  1  1  0  1  0 |~p* q =1 =0 | Yd=1<=>~p=1 i  q=1 |~p~~>q =1

Mintermy w Wikipedii:
[link widoczny dla zalogowanych]
Definicja implikacji prostej p|=>q w spójnikach „lub”(+) i „i(*) to układ równań logicznych Y i ~Y odczytany z tabeli mintermów (logiki alternatywno-koniunkcyjnej zgodnej z logiką 5-cio latka).
1.
Y = (p=>q) = Ya+Yc+Yd
Y =(p=>q) = p*q + ~p*~q + ~p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1 lub ~p=1 i q=1
2.
~Y=~Yb
~Y= ~(p=>q) = p*~q
co matematycznie oznacza:
~Y=1 <=> p=1 i ~q=1
Gdzie:
Y = p=>q - warunek wystarczający

W ogólnym przypadku dziedzina dla implikacji prostej p|=>q to
D = Y+~Y
Dowód:
D = p*q + ~p*~q + p*~q + ~p*q
Minimalizujemy:
D = p*(q+~q)+~p*(~q+q)
D = p+~p =1
To jest zakichane zdanie zawsze prawdziwe ziemskich matematyków, czyli gówno-prawda.

Dlaczego to jest gówno-prawda?
Bo w ogólnym przypadku do akcji wkracza 5-cio latek … i pozamiatane!
Pani w przedszkolu:
Jeśli zdasz egzamin dostaniesz komputer
Y = (E=>K) = E*K + ~E*~K + ~E*K
co matematycznie oznacza:
Y = (E=>K| =1 <=> E=1 i K=1 lub ~E=1 i ~K=1 lub ~E*K
Odczytujemy:
Prawdą jest (=1) że Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
A: E*K = 1*1 =1 - zdam egzamin (E=1) i dostanę komputer (K=1)
lub:
C: ~E*~K = 1*1 =1 - nie zdam egzaminu (~E=1) i nie dostanę komputera (~K=1)
lub
D: ~E*K = 1*1 =1 - nie zdam egzaminu (~E=1) i dostanę komputer (K=1)
Ostatnie zdanie D to matematyczny akt miłości, świętość każdego nadawcy, czyli możliwość wręczenia nagrody mimo że odbiorca nie spełnił warunku nagrody (nie zdał egzaminu ~E=1)

Zuzia do Jasia:
Czy wypowiadając warunek wystarczający E=>K pani może skłamać?
Jaś:
Ziemscy matematycy twierdzą że pani nie może skłamać, ale to jest oczywista gówno-prawda.
Pani może skłamać a odczytujemy to z równania ~Y w mintermach:
~Y= ~(E=>K) = E*~K
co matematycznie oznacza:
~Y=1 <=> E=1 i ~K=1
Odczytujemy:
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy:
B: ~Y = ~(E=>K) = E*~K =1*1 =1 - zdam egzamin (E=1) i nie dostanę komputera (K=1)

Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani skłamie (nie dotrzyma słowa ~Y)

Podsumowanie:
Ziemianie błędnie matematycznie utożsamiają warunek wystarczający p=>q z implikacją prostą p|=>q bo:
Definicja implikacji prostej p|=>q w warunku wystarczającym => i koniecznym ~>:
p|=>q = (p=>q)*~(p~>q)
gdzie:
p|=>q ## p=>q ## p~>q
## - różne na mocy definicji

Definicja implikacji prostej p|=>q w spójnikach „lub”(+) i „i”(*) to układ równań logicznych:
1.
Y = (p=>q) = p*q + ~p*~q + ~p*q
2.
~Y = ~(p=>q) = p*~q

Z diagramu implikacji prostej p|=>q w zbiorach odczytujemy:
Kod:

Definicja symboliczna implikacji prostej p|=>q
A: p=> q =[ p* q= p]=1 - bo zbiór p jest podzbiorem => q
B: p~~>~q=[ p*~q   ]=0 - bo zbiór p jest rozłączny ze zbiorem ~q
C:~p~>~q =[~p*~q=~q]=1 - bo zbiór ~p jest nadzbiorem ~> zbioru ~q
D:~p~~>q =[~p* q   ]=1 - bo zbiór ~p ma część wspólną ze zbiorem q

Gdzie:
p=>q - warunek wystarczający wchodzący w skład definicji implikacji prostej p|=>q
Najważniejsze relacje w zbiorach odczytane z diagramu to:
A: p=>q = p*q =p - bo zbiór p jest podzbiorem => zbioru q
C: ~p~>~q = ~p*~q = ~q - bo zbiór ~p jest nadzbiorem ~> zbioru ~q

Definicja warunku wystarczającego p=>q w spójnikach “lub”(+) i „i”(*):
Y = (p=>q) = p*q + ~p*~q + ~p*q
Korzystając z relacji zbiorów wyżej minimalizujemy:
Y = p*q + ~p*~q + ~p*q
Y = p + ~q + ~p*q
Y = p+z
z = ~q+~p*q
Przejście do logiki ujemnej (bo ~z) poprzez negację zmiennych i wymianę spójników
~z = q*(p+~q)
~z = q*p + q*~q
~z = p*q
Powrót do logiki dodatniej (bo z):
z = ~p+~q
Odtwarzając podstawienie z mamy:
Y = p+z
Y = p+ ~p + ~q
Y = D + ~q
Y = D =1
Gdzie:
D - dziedzina równani algebry Boole’a
Właściwości dziedziny:
x+~x = D=1
x*~x = [] =0
D*x =x
D+x = D =1

Kwadratura koła dla ziemskich matematyków:
Nie korzystając z wiedzy o relacjach między zbiorami p i q w implikacji prostej p|=>q:
A: p=>q = p*q =p - bo zbiór p jest podzbiorem => zbioru q
C: ~p~>~q = ~p*~q = ~q - bo zbiór ~p jest nadzbiorem ~> zbioru ~q
zminimalizuj warunek wystarczający p=>q:
Y = (p=>q) = p*q + ~p*~q + ~p*q
na gruncie tylko i wyłącznie rachunku zero-jedynkowego do zakichanego zdania zawsze prawdziwego.
Jeśli dowolny ziemski matematyk tego dokona to kasuję algebrę Kubusia
Inaczej oczywistym jest, że należy skasować calusieńką, aktualną gówno-logikę ziemskich matematyków.


3.0 Równania alternatywno-koniunkcyjne i koniunkcyjno-alternatywne

Prawo Kłapouchego:
Kolejność wykonywania działań w logice człowieka:
„i”(*), „lub”(+), warunek wystarczający =>, warunek konieczny ~>
Człowiek w logice matematycznej pod którą podlega, algebrze Kubusia, nie widzi nawiasów, zatem nie rozumie równań koniunkcyjno-alternatywnych.

Weźmy na tapetę równoważność wyrażoną spójnikami „lub”(+) i „i”(*):
Y = (p<=>q)
1.
1: Y = p*q+~p*~q
2.
Krok A
W równaniu 1 uzupełniamy brakujące nawiasy:
Y = (p*q)*(~p*~q)
Krok B
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników na przeciwne
2: ~Y = (~p+~q)*(p+q)
3.
Przechodzimy z równaniem 2 do postaci alternatywno-koniunkcyjnej poprzez wymnożenie wielomianu
~Y = (p+q)*(~p+~q)
~Y = p*~p+p*~q+~p*q + q*~q
3: ~Y = p*~q + ~p*q
4.
Krok A
W równaniu 3 uzupełniamy brakujące nawiasy
~Y = (p*~q) + (~p*q)
Krok B
Przechodzimy do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników na przeciwne
4: Y = (~p+q)*(p+~q)

Podsumujmy nasze przekształcenia:
1: Y = p*q+~p*~q
2: ~Y = (~p+~q)*(p+q)
3: ~Y = p*~q + ~p*q
4: Y = (~p+q)*(p+~q)

Matematyczne tożsamości:
Y=Y
stąd:
Y = p*q+~p*~q = (~p+q)*(p+~q)
~Y=~Y
stąd:
~Y = p*~q + ~p*q = (p+q)*(~p+~q)

Prawo Zajączka:
Jeśli w dowolnej tabeli zero-jedynkowej mamy w kolumnie wynikowej Y co najmniej dwie jedynki i co najmniej dwa zera to istnieje postać koniunkcyjno-alternatywna (makstermy) tożsama z postacią alternatywno-koniunkcyjną (mintermy)

Definicja równoważności spełnia prawo Zajączka.

Definicja równoważności p<=>q w spójnikach „lub”(+) i „i”(*) opisana mintermami jest następująca:
Y = p<=>q
Kod:

Definicja           |Mintermy    |Co matematycznie
zero-jedynkowa      |            |oznacza
równoważności       |            |
   p  q ~p ~q  Y ~Y |       Y ~Y |
A: 1  1  0  0  1  0 | p* q =1 =0 | Ya=1<=> p=1 i  q=1
B: 1  0  0  1  0  1 | p*~q =0 =1 |~Yb=1<=> p=1 i ~q=1
C: 0  0  1  1  1  0 |~p*~q =1 =0 | Yc=1<=>~p=1 i ~q=1
D: 0  1  1  0  0  1 |~p* q =0 =1 |~Yd=1<=>~p=1 i  q=1

Mintermy w Wikipedii:
[link widoczny dla zalogowanych]
Definicja równoważności w spójnikach „lub”(+) i „i(*) to układ równań logicznych Y i ~Y odczytany z tabeli mintermów (logiki alternatywno-koniunkcyjnej zgodnej z logiką 5-cio latka).
1.
Y = Ya+Yc
Y = p*q + ~p*~q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1
2.
~Y=~Yb+~Yd
~Y=p*~q + ~p*q
co matematycznie oznacza:
~Y=1 <=> p=1 i ~q=1 lub ~p=1 i q=1

Definicja równoważności p<=>q w spójnikach „lub”(+) i „i”(*) opisana makstermami jest następująca:
Y = p<=>q
Kod:

Definicja           |Makstermy   |Co matematycznie
zero-jedynkowa      |            |oznacza
równoważności       |            |
   p  q ~p ~q  Y ~Y |       Y ~Y |
A: 1  1  0  0  1  0 | p+ q =1 =0 |~Ya=0<=>~p=0 lub ~q=0
B: 1  0  0  1  0  1 | p+~q =0 =1 | Yb=0<=>~p=0 lub  q=0
C: 0  0  1  1  1  0 |~p+~q =1 =0 |~Yc=0<=> p=0 lub  q=0
D: 0  1  1  0  0  1 |~p+ q =0 =1 | Yd=0<=> p=0 lub ~q=0

Maktermy w Wikipedii:
[link widoczny dla zalogowanych]
Definicja równoważności w spójnikach „lub”(+) i „i(*) to układ równań logicznych Y i ~Y odczytany z tabeli makstermów.
3.
Y = Yb*Yd
Y = (p+~q)*(~p+q)
co matematycznie oznacza:
Y=0 <=> (p=0 lub ~q=0) i (~p=0 lub q=0)
4.
~Y=~Ya*~Yc
~Y=(p+q)*(~p+~q)
Co matematycznie oznacza:
Y=0 <=> (p=0 lub q=0) i (~p=0 lub ~q=0)

Matematycznie zachodzi:
Y=Y
1=3
stąd:
Y = p*q+~p*~q = (p+~q)*(~p+q)
Matematycznie zachodzi również:
~Y=~Y
2=4
stąd:
~Y=p*~q + ~p*q = (p+q)*(~p+~q)

Podsumowanie:
Postaci matematycznie tożsame:
Y = p*q+~p*~q = (~p+q)*(p+~q)
~Y = p*~q + ~p*q = (p+q)*(~p+~q)

Prawo Kłapouchego:
Kolejność wykonywania działań w logice człowieka:
„i”(*), „lub”(+), warunek wystarczający =>, warunek konieczny ~>
Człowiek w logice matematycznej pod którą podlega, algebrze Kubusia, nie widzi nawiasów, zatem nie rozumie równań koniunkcyjno-alternatywnych.

W równaniach alternatywno-koniunkcyjnych z definicji nie ma nawiasów (są domyślne obejmujące koniunkcję), zatem człowiek rozumie każdą postać alternatywno-koniunkcyjną.
Złożone równanie alternatywno-koniunkcyjne możemy minimalizować, pozostawiając na końcu minimalne równanie alternatywno-koniunkcyjne, zrozumiałe dla człowieka.

Dowód na przykładzie iż równania alternatywno-koniunkcyjne rozumie każdy człowiek

Pani w przedszkolu:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
K<=>T = K*T + ~K*~T
co matematycznie oznacza:
K<=>T =1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Odczytujemy:
Prawdą jest (=1) że Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
A: K*T = 1*1 =1 - jutro pójdziemy do kina (K=1) lub pójdziemy do teatru (T=1)
lub:
C: ~K*~T = 1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Zuzia do Jasia:
Czy wypowiadając równoważność pani może skłamać?
Jaś:
Pani może skłamać a odczytujemy to z równania ~Y w mintermach:
~Y=K*~T + ~K*T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Odczytujemy:
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy:
B: K*~T=1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
lub
D: ~K*T = 1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani skłamie (nie dotrzyma słowa ~Y)

Jak widzimy, postaci alternatywno-koniunkcyjne są doskonale rozumiane przez każdego 5-cio latka.

Postaci matematycznie tożsame:
Y = p*q+~p*~q = (~p+q)*(p+~q)
~Y = p*~q + ~p*q = (p+q)*(~p+~q)

Nasz przykład:
Y = K*T+~K*~T = (~K+T)*(K+~T)
~Y = K*~T + ~K*T = (K+T)*(~K+~T)

Pani w przedszkolu:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
K<=>T = K*T + ~K*~T

Zapis matematycznie tożsamy w postaci równania koniunkcyjno-alternatywnego:
K<=>T = (~K+T)*(K+~T)
Logika matematyczna z definicji nie widzi nawiasów.
Po pierwsze:
Zauważmy, że po opuszczeniu nawiasów mamy zupełnie co innego:
K<=>T = ~K+T*K + ~T
Po drugie:
Nawet jak uwzględnimy nawiasy, to i tak żaden człowiek nie zrozumie co pani przedszkolanka chciała powiedzieć.
Dowód:
Y = K<=>T = (~K+T)*(K+~T)
Wypowiedzmy prawą stronę.
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
A: Jutro nie pójdziemy do kina (~K) lub pójdziemy do teatru (T)
„i”(*)
B: Jutro pójdziemy do kina (K) lub nie pójdziemy do teatru (~T)

Życzę powodzenia każdemu kamikadze który podejmie się przetłumaczenia postaci koniunkcyjno-alternatywnej na język zrozumiały przez każdego człowieka.

Dokładnie ten sam problem będziemy mieć z funkcją ~Y w postaci koniunkcyjno-alternatywnej.
~Y = K*~T + ~K*T = (K+T)*(~K+~T)


Ostatnio zmieniony przez rafal3006 dnia Pią 18:06, 06 Wrz 2019, w całości zmieniany 5 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 32685
Przeczytał: 43 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 21:17, 08 Paź 2017    Temat postu:

Spis treści
4.0 Operatory implikacyjne w zbiorach 1
4.1 Definicje spójników implikacyjnych =>, ~> i ~~> w zbiorach 3
4.2 Operator implikacji prostej |=> w zbiorach 5
4.3 Operator implikacji odwrotnej p|~>q w zbiorach 8
4.4 Operator chaosu |~~> w zbiorach 12
4.5 Operator równoważności p<=>q w zbiorach 14
5.0 Spójniki implikacyjne w rachunku zero-jedynkowym 16
5.1 Operatory logiczne w rachunku zero-jedynkowym 19
5.2 Wyprowadzenie symbolicznych definicji operatorów implikacyjnych 21


4.0 Operatory implikacyjne w zbiorach

Dla zrozumienia istoty budowy i działania operatorów implikacyjnych kluczowym jest zrozumienie ich budowy w zbiorach.

Najważniejsze prawa logiki matematycznej dotyczą operatorów implikacyjnych zapewniających matematyczną obsługę wszelkich zdań warunkowych „Jeśli p to q”. Zdania warunkowe „Jeśli p to q” to fundament logiki matematycznej.

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>
1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*~q =1 - definicja kwantyfikatora małego spełniona wtedy i tylko wtedy gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)

Uwaga!
Żadne inne znaczki w obsłudze zdań warunkowych „Jeśli p to q” nie są używane.

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>

Prawo Kobry wynika bezpośrednio z definicji znaczków =>, ~> i ~~> podanych wyżej.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q=p*~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Prawa Kubusia, wiążące warunek wystarczający => i konieczny ~>:
p=>q =~p~>~q
p~>q = ~p=>~q
Interpretacja dowolnego prawa matematycznego (logicznego):
Prawdziwość dowolnej strony wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony wymusza fałszywość drugiej strony

Przykład:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
LN=[1,2,3,4,5,6,7,8,9..] - przyjmijmy dziedzinę, zbiór liczb naturalnych
stąd:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2

Prawa Kubusia:
P8=>P2 = ~P8~>~P2 =1 - prawdziwość dowolnej strony wymusza prawdziwość drugiej strony
P2=>P8 = ~P2~>~P8 =0 - fałszywość dowolnej strony wymusza fałszywość drugiej strony

Dowolne zdanie warunkowe „Jeśli p to q” może wchodzić w skład jednego z czterech operatorów implikacyjnych:
I.
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego =>między tymi samymi punktami
p=>q =1
p~>q =0
Stąd mamy:
Definicja implikacji prostej p|=>q w warunkach wystarczającym => i koniecznym ~>:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1
Na mocy definicji zachodzi:
p|=>q ## p=>q
## - różne na mocy definicji

II.
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami
p~>q =1
p=>q =0
Stąd mamy:
Definicja implikacji odwrotnej p|~>q w warunkach koniecznym ~> i wystarczającym =>:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) = 1*1 =1
Na mocy definicji zachodzi:
p|~>q ## p~>q
## - różne na mocy definicji

III.
Definicja równoważności p<=>q:

Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami
p=>q =1
p~>q =1
Stąd mamy:
Definicja równoważności p<=>q w warunkach wystarczającym => i koniecznym ~>:
p<=>q = (p=>q)*(p~>q) = 1*1 =1
Na mocy definicji zachodzi:
p<=>q ## p=>q ## p~>q
## - różne na mocy definicji

IV.
Definicja operatora chaosu p|~~>q:

Operator chaosu p|~~>q to co najmniej jeden punkt wspólny zbiorów p i q oraz brak zachodzenia zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami.
p~~>q =1
p=>q =0
p~>q =0
Stąd mamy:
Definicja operatora chaosu p|~~>q w warunku wystarczającym => i koniecznym ~>
p|~~>q = (p~~>q)*~(p=>q)*~(p~>q) = 1*~(0)*~(0) = 1*1*1 =1
Na mocy definicji zachodzi:
p|~~>q ## p~~>q
## - różne na mocy definicji


4.1 Definicje spójników implikacyjnych =>, ~> i ~~> w zbiorach

Wszystkie możliwe relacje dwóch zbiorów p i q to znaczki =>, ~>, „=” i ~~>:

Definicja podzbioru:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy => do zbioru q
p=>q
=> - znaczek podzbioru

Definicja warunku wystarczającego =>:
Jeśli zajdzie p to zajdzie q
p=>q
Matematycznie:
Warunek wystarczający => jest tożsamy z definicją podzbioru =>
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Wymuszam dowolne p i musi pojawić się q
Innymi słowy:
Jeśli wylosuję dowolny element ze zbioru p to ten element na 100% będzie w zbiorze q

Przykład:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Definicja warunku wystarczającego => spełniona (=1) bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń, koń ..]
Wymuszam dowolnego psa ze zbioru wszystkich psów i ten pies na 100% jest w zbiorze 4L.

Definicja nadzbioru:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q
~> - znaczek nadzbioru

Definicja warunku koniecznego ~>:
Jeśli zajdzie p to zajdzie q
p~>q
Matematycznie:
Warunek konieczny ~> jest tożsamy z definicją nadzbioru ~>
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Zabieram wszystkie p i znika mi q

Przykład:
Jeśli zwierzę ma cztery łapy to może ~> być psem
4L~>P =1
Definicja warunku koniecznego ~> spełniona (=1) bo zbiór zwierząt z czterema łapami 4L=[pies, słoń, koń ..] jest nadzbiorem zbioru P=[pies]

Definicja kwantyfikatora małego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Definicja kwantyfikatora małego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny.

Przykład:
Jeśli zwierzę ma cztery łapy to może ~~> nie być psem
4L~~>~P = 4L*~P=1 bo słoń
Definicja kwantyfikatora małego ~~> spełniona bo zbiór 4L=[pies, słoń, koń ..] ma co najmniej jeden element wspólny ze zbiorem ~P=[słoń, koń, kura, wąż ..]

Tożsamość zbiorów:
Zbiory p i q nazywamy tożsamymi wtedy i tylko wtedy, gdy każdy element zbioru p jest elementem zbioru q i na odwrót
p=q <=> (p=>q)*(q=>p)

Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>

Prawo Kobry wynika bezpośrednio z definicji znaczków =>, ~> i ~~> podanych wyżej.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q=p*~q
Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Przykład:
A.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem zbioru zwierząt z czterema łapami 4L=[pies, słoń, koń ..]
Prawdziwość warunku wystarczającego => A wymusza fałszywość kontrprzykładu B (i odwrotnie)
B.
Jeśli zwierzę jest psem to może ~~> nie mieć czterech łap
P~~>~4L = P*~4L = [] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura, wąż ..] są rozłączne.


4.2 Operator implikacji prostej |=> w zbiorach

Warunek wystarczający =>:
Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem zbioru q i nie jest tożsamy ze zbiorem q
p|=>q = (p=>q)*~[p=q]


Kod:

T1: Tabela 1
Definicja symboliczna implikacji prostej p|=>q
A: p=> q =[ p* q= p]=1 - bo zbiór p jest podzbiorem => q
B: p~~>~q=[ p*~q   ]=0 - bo zbiór p jest rozłączny ze zbiorem ~q
C:~p~>~q =[~p*~q=~q]=1 - bo zbiór ~p jest nadzbiorem ~> zbioru ~q
D:~p~~>q =[~p* q   ]=1 - bo zbiór ~p ma część wspólną ze zbiorem q

Kod:

T2: Tabela 2
Definicja   |co matematycznie   |Prawa Prosiaczka   |Definicja warunku
symboliczna |oznacza            |(~p=1)=(p=0)       |wystarczającego p=>q
operatora   |                   |(~q=1)=(q=0)       |dla potrzeb rachunku
implikacji  |                   |                   |zero-jedynkowego
prostej     |                   |                   |Zapis tożsamy
p|=>q       |                   |                   | p   q  p=>q
A: p=> q =1 |( p=1)=> ( q=1) =1 |( p=1)=> ( q=1) =1 | 1=> 1   =1
B: p~~>~q=0 |( p=1)~~>(~q=1) =0 |( p=1)~~>( q=0) =0 | 1~~>0   =0
C:~p~>~q =1 |(~p=1)~> (~q=1) =1 |( p=0)~> ( q=0) =1 | 0~> 0   =1
D:~p~~>q =1 |(~p=1)~~>( q=1) =1 |( p=0)~~>( q=1) =1 | 0~~>1   =1
   1   2  3    a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki dodatniej (brak przeczenia p i q)

W definicji symbolicznej operatora implikacji prostej p|=>q (obszar ABCD123) doskonale widać, że warunek wystarczający => to tylko i wyłącznie pierwsza linia A123.
A123: p=>q =1
Natomiast operator implikacji prostej p|=>q w logice dodatniej (bo q) to wszystkie cztery linie ABCD123.
Matematycznie zachodzi więc:
A123: p=>q ## ABCD123: p|=>q
gdzie:
## - różne na mocy definicji

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego to tabela ABCD456.
Nagłówek w kolumnie wynikowej tej tabeli pokazuje linię w tabeli symbolicznej ABCD123 względem której dokonano kodowania zero-jedynkowego na mocy praw Prosiaczka.
W naszym przypadku punktem odniesienia jest linia:
A123: p=>q
Stąd mamy:
Kod:

Definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego
   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1


Zakodujmy na koniec definicję implikacji prostej p|=>q względem linii:
C123: ~p~>~q
by lepiej zrozumieć technikę przechodzenia od definicji symbolicznej do definicji zero-jedynkowej
Kod:

T2’: Tabela 2’
Definicja   |co matematycznie   |Prawa Prosiaczka   |Definicja warunku
symboliczna |oznacza            |(p=1)=(~p=0)       |koniecznego ~p~>~q
operatora   |                   |(q=1)=(~q=0)       |dla potrzeb rachunku
implikacji  |                   |                   |zero-jedynkowego
prostej     |                   |                   |
p|=>q       |                   |                   |~p  ~q ~p~>~q
A: p=> q =1 |( p=1)=> ( q=1) =1 |(~p=0)=> (~q=0) =1 | 0=> 0   =1
B: p~~>~q=0 |( p=1)~~>(~q=1) =0 |(~p=0)~~>(~q=1) =0 | 0~~>1   =0
C:~p~>~q =1 |(~p=1)~> (~q=1) =1 |(~p=1)~> (~q=1) =1 | 1~> 1   =1
D:~p~~>q =1 |(~p=1)~~>( q=1) =1 |(~p=1~~> (~q=0) =1 | 1~~>0   =1
   1   2  3    a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki ujemnej (bo ~p i ~q)

Nagłówek w kolumnie 6 to tym razem tylko i wyłącznie linia C123: ~p~>~q względem której dokonaliśmy kodowania zero-jedynkowego.
Kolumny 6 w tabelach T2 i T2’ są identyczne co jest dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q


Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na 100% jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
Wylosowanie dowolnej liczby ze zbioru P8=[8,16,24..] daje nam gwarancję matematyczną => iż ta liczb będzie w zbiorze P2=[2,4,6,8..]
Matematycznie:
Warunek wystarczający => = gwarancja matematyczna =>
Przyjmijmy dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P8=[8,16,24..]
P2=[2,4,6,8..]
Obliczenia zaprzeczeń zbiorów:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
~P2=[LN-P2]=[1,3,5,7,9..]
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..] i nie jest tożsamy ze zbiorem P2
Wniosek:
Warunek wystarczający A wchodzi w skład definicji implikacji prostej P8|=>P2:
P8|=>P2 = (P8=>P2)*~[P8=P2]
Prawdziwość warunku wystarczającego A wymusza fałszywość kontrprzykładu B.
Sprawdzenie.
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 =[] =0
Definicja kwantyfikatora małego nie jest spełniona (=0) bo zbiór P8=[8,16,24..] jest rozłączny ze zbiorem ~P2=[1,3,5,7..]
… a jeśli liczba nie jest podzielna przez 8?
Prawo Kubusia:
A: P8=>P2 = C: ~P8~>~P2
C.
Jeśli liczba nie jest podzielna przez 8 to może ~> nie być podzielna przez 2
~P8~>~P2 =1
Definicja warunku koniecznego ~> spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
lub
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 2
~P8~~>P2 = ~P8*P2 =1 bo 2
Definicja kwantyfikatora małego ~~> spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] ma co najmniej jeden element wspólny ze zbiorem P2=[2,4,6,8..]

Wniosek:
Zdania A,B,C i D wchodzą w skład definicji implikacji prostej p|=>q

Podsumowanie:
Doskonale widać, że jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 8 to mamy gwarancję matematyczną => iż ta liczba będzie podzielna przez 2.
Jeśli natomiast ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 8 to mamy najzwyklejsze „rzucanie monetą”. Wylosowana liczba może być niepodzielna przez 2 (prawdziwe zdanie C i fałszywe D) lub wylosowana liczba może być podzielna przez 2 (prawdziwe zdanie D i fałszywe C).


4.3 Operator implikacji odwrotnej p|~>q w zbiorach

Warunek konieczny ~>:
Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
p|~>q = (p~>q)*~[p=q]


Kod:

T3: Tabela 3
Definicja symboliczna implikacji odwrotnej p|~>q
A: p~> q =[ p* q= q]=1 - bo zbiór p jest nadzbiorem ~> q
B: p~~>~q=[ p*~q   ]=1 - bo zbiór p ma część wspólną ze zbiorem ~q
C:~p=>~q =[~p*~q=~q]=1 - bo zbiór ~p jest podzbiorem => zbioru ~q
D:~p~~>q =[~p* q   ]=0 - bo zbiór ~p jest rozłączny ze zbiorem q

Kod:

T4: Tabela 4
Definicja   |co matematycznie   |Prawa Prosiaczka   |Definicja warunku
symboliczna |oznacza            |(~p=1)=(p=0)       |koniecznego ~>
operatora   |                   |(~q=1)=(q=0)       |dla potrzeb rachunku
implikacji  |                   |                   |zero-jedynkowego
odwrotnej   |                   |                   |Zapis tożsamy
p|~>q       |                   |                   | p   q  p~>q
A: p~> q =1 |( p=1)~> ( q=1) =1 |( p=1)~> ( q=1) =1 | 1~> 1   =1
B: p~~>~q=1 |( p=1)~~>(~q=1) =1 |( p=1)~~>( q=0) =1 | 1~~>0   =1
C:~p=>~q =1 |(~p=1)=> (~q=1) =1 |( p=0)=> ( q=0) =1 | 0=> 0   =1
D:~p~~>q =0 |(~p=1)~~>( q=1) =0 |( p=0)~~>( q=1) =0 | 0~~>1   =0
   1   2  3    a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki dodatniej (brak przeczenia p i q)

W definicji symbolicznej operatora implikacji odwrotnej p|~>q (obszar ABCD123) doskonale widać, że warunek konieczny ~> to tylko i wyłącznie pierwsza linia A123.
A123: p~>q =1
Natomiast operator implikacji odwrotnej p|~>q w logice dodatniej (bo q) to wszystkie cztery linie ABCD123.
Matematycznie zachodzi więc:
A123: p~>q ## ABCD123: p|~>q
gdzie:
## - różne na mocy definicji

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego to tabela ABCD456.
Nagłówek w kolumnie wynikowej tej tabeli pokazuje linię w tabeli symbolicznej ABCD123 względem której dokonano kodowania zero-jedynkowego na mocy praw Prosiaczka.
W naszym przypadku punktem odniesienia jest linia:
A123: p~>q
Stąd mamy:
Kod:

Definicja warunku koniecznego ~>
dla potrzeb rachunku zero-jedynkowego
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0


Zakodujmy na koniec definicję implikacji odwrotnej p|~>q względem linii:
C123: ~p=>~q
by lepiej zrozumieć technikę przechodzenia od definicji symbolicznej do definicji zero-jedynkowej
Kod:

T4’: Tabela 4’
Definicja   |co matematycznie   |Prawa Prosiaczka   |Definicja warunku
symboliczna |oznacza            |(p=1)=(~p=0)       |wystarczającego ~p=>~q
operatora   |                   |(q=1)=(~q=0)       |dla potrzeb rachunku
implikacji  |                   |                   |zero-jedynkowego
odwrotnej   |                   |                   |Zapis tożsamy
p|~>q       |                   |                   |~p  ~q  ~p=>~q
A: p~> q =1 |( p=1)~> ( q=1) =1 |(~p=0)~> (~q=0) =1 | 0~> 0   =1
B: p~~>~q=1 |( p=1)~~>(~q=1) =1 |(~p=0)~~>(~q=1) =1 | 0~~>1   =1
C:~p=>~q =1 |(~p=1)=> (~q=1) =1 |(~p=1)=> (~q=1) =1 | 1=> 1   =1
D:~p~~>q =0 |(~p=1)~~>( q=1) =0 |(~p=1)~~>(~q=0) =0 | 1~~>0   =0
   1   2  3    a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki ujemnej (bo ~p i ~q)

Nagłówek w kolumnie 6 to tym razem tylko i wyłącznie linia C123: ~p=>~q względem której dokonaliśmy kodowania zero-jedynkowego.
Kolumny 6 w tabelach T2 i T2’ są identyczne co jest dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q

Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Zabieram zbiór P2=[2,4,6,8..] i znika mi zbiór P8=[8,16,24..]
Zbiór P2 jest konieczny ~> dla utworzenia zbioru P8.
Przyjmijmy dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P2=[2,4,6,8..]
P8=[8,16,24..]
Obliczenia zaprzeczeń zbiorów:
~P2=[LN-P2]=[1,3,5,7,9..]
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
Zauważmy że:
Zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..] i nie jest tożsamy ze zbiorem P8
Wniosek:
Warunek konieczny ~> A wchodzi w skład definicji implikacji odwrotnej P2|~>P8 w logice dodatniej (bo P8):
P2|~>P8 = (P2~>P8)*~[P2=P8]
lub
B.
Jeśli liczba jest podzielna przez 2 to może ~~> nie być podzielna przez 8
P2~~>~P8 = P2*~P8 =1 bo 2
Definicja kwantyfikatora małego ~~> spełniona bo zbiór P2=[2,4,6,8..] ma co najmniej jeden element wspólny ze zbiorem ~P8=[1,2,3,4,5,6,7..9..] np. 2
… a jeśli liczba nie jest podzielna przez 2?
Prawo Kubusia:
A: P2~>P8 = C: ~P2=>~P8
C.
Jeśli liczba nie jest podzielna przez 2 to na 100% nie jest podzielna przez 8
~P2=>~P8 =1
Definicja warunku wystarczającego => spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7,8..9..]
Zauważmy że:
Zbiór ~P2 jest podzbiorem => zbioru ~P8 i nie jest tożsamy ze zbiorem ~P8
Wniosek:
Warunek wystarczający => C wchodzi w skład definicji implikacji prostej ~P2|=>~P8 w logice ujemnej (bo ~P8)
~P2|=>~P8 = (~P2=>~P8)*~[~P2=~P8]
Prawdziwość warunku wystarczającego => c wymusza fałszywość kontrprzykładu D
D.
Jeśli liczba nie jest podzielna przez 2 to może ~~> być podzielna przez 8
~P2~~>P8 = ~P2*P8 =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16,24..]

Podsumowanie:
1.
Zdania A,B,C i D wchodzą w skład definicji implikacji prostej odwrotnej P2|~>P8 w logice dodatniej bo P8
P2|~>P8 = (P2~>P8)*~[P2=P8]
2.
Dokładnie te same zdania A,B,C i D z dokładnością do każdej literki i każdego przecinka wchodzą w skład operatora implikacji prostej ~P2|=>~P8 w logice dodatniej (bo ~P8)
~P2|=>~P8 = (~P2=>~P8)*~[~P2=~P8]
3.
Wniosek:
Prawo Kubusia mówiące o związku warunku koniecznego ~> z warunkiem wystarczającym =>:
P2~>P8 = ~P2=>~P8
Także na poziomie operatora implikacji zachodzi:
P2|~>P8 = ~P2|=>~P8
4.
Doskonale widać, że zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 to mamy najzwyklejsze „rzucanie monetą”. Wylosowana liczba może być podzielna przez 8 (prawdziwe zdanie A i fałszywe B) lub wylosowana liczba może nie być podzielna przez 2 (prawdziwe zdanie B i fałszywe A).
Jeśli natomiast ze zbioru liczb naturalnych LN wylosujemy liczbą niepodzielną przez 2 to mamy gwarancję matematyczną => iż ta liczba nie będzie podzielna przez 8.


4.4 Operator chaosu |~~> w zbiorach

Kwantyfikator mały ~~>:
Jeśli p to może ~~> q
p~~>q = p*~q =1 - definicja kwantyfikatora małego spełniona wtedy i tylko wtedy gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)


Definicja operatora chaosu |~~> w zbiorach:
Zbiory p i q mają część wspólną i żaden z nich nie zawiera się w drugim
p|~~>q = (p~~>q)*~(p=>q)*~(q=>p) = 1*~(0)*~(0) = 1*1*1 =1
Gdzie:
p~~>q = p*q =1 - istnieje część wspólna zbiorów p i q
p=>q =0 - zbiór p nie jest podzbiorem => zbioru q
q=>p =0 - zbiór q nie jest podzbiorem => zbioru p

Kod:

T5: Tabela 5
Definicja symboliczna operatora chaosu p|~~>q
A: p~~>q = p* q =1 - bo zbiór p ma część wspólną ~~> ze zbiorem q
B: p~~>~q= p*~q =1 - bo zbiór p ma część wspólną ~~> ze zbiorem ~q
C:~p~~>~q=~p*~q =1 - bo zbiór ~p ma część wspólną ~~> ze zbiorem ~q
D:~p~~>q =~p* q =1 - bo zbiór ~p ma część wspólną ~~> ze zbiorem q

Kod:

T6: Tabela 6
Definicja   |co matematycznie   |Prawa Prosiaczka   |Definicja warunku
symboliczna |oznacza            |(~p=1)=(p=0)       |wystarczającego p=>q
operatora   |                   |(~q=1)=(q=0)       |dla potrzeb rachunku
chaosu      |                   |                   |zero-jedynkowego
p|~~>q      |                   |                   |Zapis tożsamy
            |                   |                   | p   q  p~~>q
A: p~~>q =1 |( p=1)~~>( q=1) =1 |( p=1)~~>( q=1) =1 | 1~~>1   =1
B: p~~>~q=1 |( p=1)~~>(~q=1) =1 |( p=1)~~>( q=0) =1 | 1~~>0   =1
C:~p~~>~q=1 |(~p=1)~~>(~q=1) =1 |( p=0)~~>( q=0) =1 | 0~~>0   =1
D:~p~~>q =1 |(~p=1)~~>( q=1) =1 |( p=0)~~>( q=1) =1 | 0~~>1   =1
   1   2  3    a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki dodatniej (brak przeczenia p i q)

W definicji symbolicznej operatora chaosu p|~~>q (obszar ABCD123) doskonale widać, że nagłówek kolumny 6 (p~~>q) to tylko i wyłącznie pierwsza linia A123.
A123: p~~>q =1
Natomiast operator chaosu p|~~>q w logice dodatniej (bo q) to wszystkie cztery linie ABCD123.
Matematycznie zachodzi więc:
A123: p~~>q ## ABCD123: p|~~>q
gdzie:
## - różne na mocy definicji

Definicja kwantyfikatora małego ~~> dla potrzeb rachunku zero-jedynkowego to tabela ABCD456.
Nagłówek w kolumnie wynikowej tej tabeli pokazuje linię w tabeli symbolicznej ABCD123 względem której dokonano kodowania zero-jedynkowego na mocy praw Prosiaczka.
W naszym przypadku punktem odniesienia jest linia:
A123: p~~>q
Stąd mamy:
Kod:

Definicja kwantyfikatora małego ~~>
dla potrzeb rachunku zero-jedynkowego
   p  q  p~~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =1


Przykład:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
Dziedzina:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P3=[3,6,9,12,15..] - zbiór liczb podzielnych przez 3
Obliczenia przeczeń zbiorów:
~P8=[1,2,3,4,5,6,7..9..]
~P3=[1,2..4,5..7,8..]
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 3
P8~~>~P3 = P8*~P3 =1 bo 8
C.
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 3
~P8~~>~P3 = ~P8*~P3 =1 bo 2
D.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 3
~P8~~>P3 = ~P8*P3 =1 bo 3


4.5 Operator równoważności p<=>q w zbiorach

Definicja operatora równoważności p<=>q w zbiorach:
Zbiór p jest podzbiorem zbioru q i jest tożsamy ze zbiorem q
p|=>q = (p=>q)*[p=q]


Kod:

T7: Tabela 7
Definicja symboliczna równoważności p<=>q
A: p=> q =[ p* q= p]=1 - bo zbiór p jest podzbiorem => q
B: p~~>~q=[ p*~q   ]=0 - bo zbiór p jest rozłączny ze zbiorem ~q
C:~p=>~q =[~p*~q=~p]=1 - bo zbiór ~p jest podzbiorem => zbioru ~q
D:~p~~>q =[~p* q   ]=0 - bo zbiór ~p jest rozłączny ze zbiorem q

Kod:

T8: Tabela 8
Definicja    |co matematycznie   |Prawa Prosiaczka   |Definicja
symboliczna  |oznacza            |(~p=1)=(p=0)       |zero-jedynkowa
operatora    |                   |(~q=1)=(q=0)       |operatora
równoważności|                   |                   |równoważności
p<=>q        |                   |                   |Zapis tożsamy
        p<=>q|                   |                   | p   q  p<=>q
A: p=> q =1  |( p=1)=> ( q=1) =1 |( p=1)=> ( q=1) =1 | 1=> 1   =1
B: p~~>~q=0  |( p=1)~~>(~q=1) =0 |( p=1)~~>( q=0) =0 | 1~~>0   =0
C:~p=>~q =1  |(~p=1)=> (~q=1) =1 |( p=0)=> ( q=0) =1 | 0=> 0   =1
D:~p~~>q =0  |(~p=1)~~>( q=1) =0 |( p=0)~~>( q=1) =0 | 0~~>1   =0
   1   2  3     a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki dodatniej (brak przeczenia p i q)

Równoważność p<=>q to wszystkie cztery linie tabeli symbolicznej ABCD123.
Definicję równoważności w warunkach wystarczających odczytujemy z definicji symbolicznej ABCD123.

Aksjomatyczna definicja równoważności z której wynika tabela zero-jedynkowa ABCD456:
Równoważność p<=>q to jednoczesne zachodzenie warunku wystarczającego A: p=>q w logice dodatniej (bo q) i w logice ujemnej C: ~p=>~q (bo ~q)
p<=>q = (A: p=>q)*(C: ~p=>~q) = 1*1 =1

Zakodujmy definicję równoważności p|=>q względem linii:
C123: ~p=>~q
by lepiej zrozumieć technikę przechodzenia od definicji symbolicznej do definicji zero-jedynkowej
Kod:

T8’: Tabela 8’
Definicja    |co matematycznie   |Prawa Prosiaczka   |Definicja
symboliczna  |oznacza            |(p=1)=(~p=0)       |równoważności dla
operatora    |                   |(q=1)=(~q=0)       |punktu odniesienia
równoważności|                   |                   |C: ~p=>~q
p<=>q        |                   |                   |
        p<=>q|                   |                   |~p  ~q ~p<=>~q
A: p=> q =1  |( p=1)=> ( q=1) =1 |(~p=0)=> (~q=0) =1 | 0=> 0   =1
B: p~~>~q=0  |( p=1)~~>(~q=1) =0 |(~p=0)~~>(~q=1) =0 | 0~~>1   =0
C:~p=>~q =1  |(~p=1)=> (~q=1) =1 |(~p=1)=> (~q=1) =1 | 1=> 1   =1
D:~p~~>q =0  |(~p=1)~~>( q=1) =0 |(~p=1~~> (~q=0) =0 | 1~~>0   =0
   1   2  3     a        b     c    d        e     f   4   5    6

Wszystkie zbiory wejściowe na których operujemy są niepuste, dlatego mają wartość logiczną JEDEN:
(p=1), (~p=1), (q=1), (~q=1)
W kodowaniu zero-jedynkowym, korzystając z prawa Prosiaczka, przechodzimy z tabeli ABCDabc do tabeli ABCDdef sprowadzając wszystkie zmienne do logiki ujemnej (bo ~p i ~q)

Nagłówek w kolumnie 6 to kodowanie zero-jedynkowe definicji symbolicznej ABCD123 względem linii C123: ~p=>~q.
Kolumny 6 w tabelach T8 i T8’ są identyczne co jest dowodem formalnym poprawności prawa algebry Boole’a:
p<=>q = ~p<=>~q


Twierdzenie Pitagorasa:
A.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% zachodzi suma kwadratów (SK=1)
TP=>SK =1
Definicja warunku wystarczającego => spełniona bo zbiór TP jest podzbiorem SK.
Bycie trójkątem prostokątnym daje nam gwarancję matematyczną => iż w tym trójkącie zachodzi suma kwadratów.
B.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =[] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiory TP i ~SK są rozłączne
C.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Definicja warunku wystarczającego => spełniona bo zbiór ~TP jest podzbiorem => zbioru ~SK
Bycie trójkątem nieprostokątnym (~TP=1) daje nam gwarancję matematyczną => iż w tym trójkącie nie zachodzi suma kwadratów (~SK=1)
D.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim suma kwadratów (SK=1)
~TP~~>SK = ~TP*SK = [] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona bo zbiory ~TP i SK są rozłączne


5.0 Spójniki implikacyjne w rachunku zero-jedynkowym

1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
Kod:

Definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego:
   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1
   1  2   3


2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
Kod:

Definicja warunku koniecznego ~>
dla potrzeb rachunku zero-jedynkowego:
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0
   1  2   3


3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*~q =1 - definicja kwantyfikatora małego spełniona wtedy i tylko wtedy gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)
Kod:

Definicja kwantyfikatora małego ~~>
dla potrzeb rachunku zero-jedynkowego
   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =1


4.
Spójnik „i”(*)

Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Inaczej Y=0
Kod:

Definicja spójnika „i”(*)
dla potrzeb rachunku zero-jedynkowego:
   p  q  Y=p*q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =0
D: 0  1  =0
   1  2   3


5.
Spójnik „lub”(+)

Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Inaczej Y=0
Kod:

Definicja spójnika „lub”(+)
dla potrzeb rachunku zero-jedynkowego:
   p  q  Y=p+q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =0
D: 0  1  =1
   1  2   3


Matematyczne związki warunku wystarczającego => i koniecznego ~> w rachunku zero-jedynkowym są następujące:
Kod:

T1: Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q q~>p=q+~p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =0    =0    =0    =0    =0        =0
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =1    =1    =1    =1    =1        =1
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
p=>q = ~p=>~q [=] q~>p = ~q=>~p [=] ~p+q
Kod:

T2: Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q q=>p=~q+p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =1    =1    =1    =1    =1        =1
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =0    =0    =0    =0    =0        =0
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
p~>q = ~p=>~q [=] q=>p = ~q~>~p [=] p+~q

Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: p=>q = ~p~>~q [=] q~>p = ~q=>~p ## T2: p~>q = ~p=>~q [=] q=>p = ~q~>~p
gdzie:
## - różne na mocy definicji

Definicja znaczka ## różne na mocy definicji:
Dwie kolumny wynikowe X i Y są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame ((X=Y)=0) oraz żadna z nich nie jest zaprzeczeniem drugiej ((X=~Y)=0)
X ## Y = ~(X=Y)*~(X=~Y) = ~(0)*~(0) = 1*1 =1
Zauważmy że tabela 1 i tabela 2 spełnia definicję znaczka ## różne na mocy definicji.

Z tabel T1 i T2 odczytujemy:

Definicje spójników implikacyjnych => i ~> w spójnikach „lub”(+) i „i”(*):
p=>q = ~p+q
p~>q = p+~q

I prawo Kubusia
Warunek wystarczający => w logice dodatniej (bo q) jest tożsamy z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q
Dowód:
~p~>~q = (~p)+~(~q) = ~p+q = p=>q
cnd

II Prawo Kubusia
Warunek konieczny ~> w logice dodatniej (bo q) jest tożsamy z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q
Dowód:
~p=>~q = ~(~p)+(~q) = p+~q = p~>q
cnd

Interpretacja praw Kubusia:
Prawdziwość dowolnej strony prawa Kubusia wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony prawa Kubusia wymusza fałszywość drugiej strony

Interpretacja praw Kubusia to tożsamość logiczna, mająca wszelkie cechy tożsamości klasycznej.
Prawa Kubusia to zdecydowanie najważniejsze prawa logiki matematycznej.


5.1 Operatory logiczne w rachunku zero-jedynkowym

Kod:

T1: Tabela 1
Matematyczne związki definicji warunku wystarczającego =>
z warunkiem koniecznym ~> oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p=>q ~p~>~q q~>p ~q=>~p p=>q=~p+q q~>p=q+~p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =0    =0    =0    =0    =0        =0
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =1    =1    =1    =1    =1        =1
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
p=>q = ~p=>~q [=] q~>p = ~q=>~p [=] ~p+q
Kod:

T2: Tabela 2
Matematyczne związki definicji warunku koniecznego ~>
z warunkiem wystarczającym => oraz spójnikami „lub”(+) i „i”(*)
   p  q ~p ~q p~>q ~p=>~q q=>p ~q~>~p p~>q=p+~q q=>p=~q+p
A: 1  1  0  0  =1    =1    =1    =1    =1        =1
B: 1  0  0  1  =1    =1    =1    =1    =1        =1
C: 0  0  1  1  =1    =1    =1    =1    =1        =1
D: 0  1  1  0  =0    =0    =0    =0    =0        =0
   1  2  3  4   5     6     7     8     9         0

Tożsamość kolumn wynikowych 5=6=7=8=9=0 jest dowodem formalnym tożsamości matematycznej:
p~>q = ~p=>~q [=] q=>p = ~q~>~p [=] p+~q

Matematycznie mamy:
TABELA 1 ## TABELA 2
T1: p=>q = ~p~>~q [=] q~>p = ~q=>~p ## T2: p~>q = ~p=>~q [=] q=>p = ~q~>~p
gdzie:
## - różne na mocy definicji

I.
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego =>między tymi samymi punktami
T1: p=>q =1
T2: p~>q =0
Stąd mamy:
Definicja implikacji prostej p|=>q w warunkach wystarczającym => i koniecznym ~>:
T1: p|=>q = (p=>q)*~(p~>q) = 1*~(0) = 1*1 =1
W tym przypadku prawdziwe są wyłącznie funkcje logiczne widoczne w tabeli T1:
T1: p=>q = ~p=>~q [=] q~>p = ~q=>~p [=] ~p+q =1
Wszelkie funkcje logiczne widoczne w tabeli T2 są fałszem:
T2: p~>q = ~p=>~q [=] q=>p = ~q~>~p [=] p+~q =0

II.
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami
T2: p~>q =1
T1: p=>q =0
Stąd mamy:
Definicja implikacji odwrotnej p|~>q w warunkach koniecznym ~> i wystarczającym =>:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) = 1*1 =1
W tym przypadku prawdziwe są wyłącznie funkcje logiczne widoczne w tabeli T2:
T2: p~>q = ~p=>~q [=] q=>p = ~q~>~p [=] p+~q =1
Wszelkie funkcje logiczne widoczne w tabeli T1 są fałszem:
T1: p=>q = ~p=>~q [=] q~>p = ~q=>~p [=] ~p+q =0

Matematycznie zachodzi:
TABELA 1 ## TABELA 2
T1: p=>q = ~p~>~q [=] q~>p = ~q=>~p ## T2: p~>q = ~p=>~q [=] q=>p = ~q~>~p
gdzie:
## - różne na mocy definicji

III.
Definicja równoważności p<=>q:

Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami
T1: p=>q =1
T2: p~>q =1
Stąd mamy:
Definicja równoważności p<=>q w warunkach wystarczającym => i koniecznym ~>:
p<=>q = (T1: p=>q)*(T2: p~>q) = 1*1 =1

Podstawiając zachodzące tożsamości w T1 i T2 mamy ogólną definicję operatora równoważności w warunkach wystarczających i koniecznych ~>:
p<=>q = (T1: p=>q = ~p~>~q = q~>p = ~q=>~p)*(T2: p~>q = ~p=>~q = q=>p = ~q~>~p)

Stąd mamy 16 tożsamych definicji równoważności w warunkach wystarczających => i koniecznych ~> z których najpopularniejsze to:
1.
Jedynie słuszna definicja ziemskich matematyków:
Równoważność to warunek wystarczający => zachodzący w dwie strony między tymi samymi punktami
p<=>q = (T1: p=>q)*(T2: q=>p) = 1*1 =1
Matematycznie zachodzi:
T1: p=>q ## T2: q=>p
## - różne na mocy definicji, bo kolumny wynikowe w tabelach T1 i T2 są różne
2.
Popularna definicja równoważności (głównie wśród prawników):
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> zachodzący między tymi samymi punktami
p<=>q = (T1: p=>q)*(T2: p~>q) =1*1=1
Do tego aby zaszło q potrzeba ~> i wystarcza => aby zaszło p
Twierdzenie Pitagorasa w formie równoważności:
TP<=>SK = (TP=>SK)*(TP~>SK)
Czytamy:
Do tego aby w trójkącie zachodziła suma kwadratów SK potrzeba ~> i wystarcza => aby ten trójkąt był prostokątny TP
3.
Aksjomatyczna definicja równoważności wynikająca bezpośrednio z definicji zero-jedynkowej:
Równoważność to jednocześnie zachodzący warunek wystarczający => w logice dodatniej (bo q) i w logice ujemnej (bo ~q)
p<=>q = (T1: p=>q)*(T2: ~p=>~q) =1*1=1

IV.
Definicja operatora chaosu p|~~>q:

Operator chaosu p|~~>q to co najmniej jeden punkt wspólny zbiorów p i q oraz brak zachodzenia zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami.
p~~>q =1
p=>q =0
p~>q =0
Stąd mamy:
Definicja operatora chaosu p|~~>q w warunku wystarczającym => i koniecznym ~>
p|~~>q = ~(p=>q)*~(p~>q) = ~(0)*~(0) = 1*1 =1


5.2 Wyprowadzenie symbolicznych definicji operatorów implikacyjnych

W tym punkcie zajmiemy się wyprowadzeniem definicji symbolicznych operatorów logicznych bezpośrednio z odpowiednich definicji zero-jedynkowych

Prawo Jastrzębia:
Definicje w zbiorach znaczków =>, ~>, ~~>, definicja kontrprzykładu oraz prawa Kubusia są wystarczające do obsługi totalnie całej logiki matematycznej.

Definicja zdania warunkowego „Jeśli p to q”:
Jeśli zajdzie p to zajdzie q
Gdzie:
p - poprzednik (fragment zdania po „Jeśli ..”)
q - następnik (fragment zdania po „to ..”)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach =>, ~>, ~~>
1.
Warunek wystarczający =>:

Jeśli p to q
p=>q =1 - warunek wystarczający => spełniony gdy zbiór p jest podzbiorem => q (inaczej p=>q=0)
2.
Warunek konieczny ~>:

Jeśli p to q
p~>q =1 - warunek konieczny ~> spełniony gdy zbiór p jest nadzbiorem ~> q (inaczej p~>q=0)
3.
Kwantyfikator mały ~~>:

Jeśli p to może ~~> q
p~~>q = p*~q =1 - definicja kwantyfikatora małego spełniona gdy zbiór p ma co najmniej jeden element wspólny ze zbiorem q (inaczej p~~>q=0)

Uwaga!
Żadne inne znaczki w obsłudze zdań warunkowych „Jeśli p to q” nie są używane.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q=p*~q

Rozstrzygnięcia:
Fałszywość kontrprzykładu p~~>~q=p*~q =0 wymusza prawdziwość warunku wystarczającego p=>q =1 (i odwrotnie.)
Prawdziwość kontrprzykładu p~~>~q=p*~q =1 wymusza fałszywość warunku wystarczającego p=>q =0 (i odwrotnie)

Prawa Kubusia:
Prawa Kubusia wiążą warunek wystarczający => z warunkiem koniecznym ~>
p=>q = ~p~>~q
p~>q = ~p=>~q

KONIEC!
Nic a nic nie jest w logice matematycznej więcej potrzebne!

I.
Wyprowadzenie definicji implikacji prostej p|=>q w warunkach wystarczających i koniecznych


Definicja implikacji prostej p|=>q znana każdemu matematykowi
Kod:

Definicja           |Mintermy znane
zero-jedynkowa      |każdemu matematykowi
   p  q ~p ~q  p=>q |
A: 1  1  0  0   =1  | p~~> q = p* q =1
B: 1  0  0  1   =0  | p~~>~q = p*~q =0
C: 0  0  1  1   =1  |~p~~>~q =~p*~q =1
D: 0  1  1  0   =1  |~p~~> q =~p* q =1
   a  b  c  d    e    1    2         3

Uwaga:
Zapis w mintermach:
p~~>q =p*q
Oznacza tylko tyle (i aż tyle) że nie interesuje nas wyznaczanie kompletnego iloczynu logicznego zbiorów p*q a jedynie dowolny element wspólny zbiorów p i q
Taki element może istnieć:
p~~>q =1
albo może nie istnieć
p~~>q =0
Oczywiście, jak ktoś jest masochistą to może sobie wyznaczać kompletny iloczyn logiczny - to niczemu nie przeszkadza.
Kod:

Symboliczna definicja implikacji prostej p|=>q
Definicja           |Mintermy
zero-jedynkowa      |
   p  q ~p ~q  p=>q |
A: 1  1  0  0   =1  | p~~> q = p* q =1 | p=> q =1  | p~> q =0
B: 1  0  0  1   =0  | p~~>~q = p*~q =0 | p~~>~q=0  | p~~>~q=0
C: 0  0  1  1   =1  |~p~~>~q =~p*~q =1 |~p~>~q =1  |~p=>~q =0
D: 0  1  1  0   =1  |~p~~> q =~p* q =1 |~p~~>q =1  |~p~~>q =1
   a  b  c  d    e    1    2         3   4   5  6    7   8  9

Analiza tabeli ABCD456 w mintermach:
1.
Fałszywość kontrprzykładu B456:
B456: p~~>~q =0
Wymusza prawdziwość warunku wystarczającego:
A456: p=>q =1
2.
Prawdziwość warunku wystarczającego => A456 wymusza prawdziwość warunki koniecznego ~> C456:
Prawo Kubusia:
A456: p=>q = C456: ~p~>~q =1

Analiza tabeli ABCD789 w mintermach:
3.
Prawdziwość kontrprzykładu D789:
D789: ~p~~>q =1
Wymusza fałszywość warunku wystarczającego => C789:
C789: ~p=>~q=0
4.
Fałszywość warunku wystarczającego C789 wymusza fałszywość warunku koniecznego ~> A789:
Prawo Kubusia:
C789: ~p=>~q = A789: p~>q =0

Stąd mamy symboliczną definicję implikacji prostej p|=>q w warunkach wystarczających i koniecznych.
A: p=>q =1
A: p~>q =0
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami:
p|=>q = (p=>q)*~(p~>q) = 1*~(0) =1*1 =1

Doskonale widać, że nagłówek w kolumnie „e”:
Ae: p=>q
Jest tożsamy wyłącznie z linią:
A456: p=>q =1
Stąd mamy definicję warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
Kod:

   p  q  p=>q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1


II.
Wyprowadzenie definicji implikacji odwrotnej p|~>q w warunkach wystarczających i koniecznych


Definicja implikacji odwrotnej p|~>q znana każdemu matematykowi
Kod:

Definicja           |Mintermy znane
zero-jedynkowa p~>q |każdemu matematykowi
   p  q ~p ~q       |
A: 1  1  0  0   =1  | p~~> q = p* q =1
B: 1  0  0  1   =1  | p~~>~q = p*~q =1
C: 0  0  1  1   =1  |~p~~>~q =~p*~q =1
D: 0  1  1  0   =0  |~p~~> q =~p* q =0
   a  b  c  d    e    1    2         3

Kod:

Symboliczna definicja operatora implikacji odwrotnej p|~>q
Definicja           |Mintermy
zero-jedynkowa      |
   p  q ~p ~q  p~>q |
A: 1  1  0  0   =1  | p~~> q = p* q =1 | p~> q =1  | p=> q =0
B: 1  0  0  1   =1  | p~~>~q = p*~q =1 | p~~>~q=1  | p~~>~q=1
C: 0  0  1  1   =1  |~p~~>~q =~p*~q =1 |~p=>~q =1  |~p~>~q =0
D: 0  1  1  0   =0  |~p~~> q =~p* q =0 |~p~~>q =0  |~p~~>q =0
   a  b  c  d    e    1    2         3   4   5  6    7   8  9

Analiza tabeli ABCD456 w mintermach:
1.
Fałszywość kontrprzykładu D456:
D456: ~p~~>q =0
Wymusza prawdziwość warunku wystarczającego C456:
C456: ~p=>~q =1
2.
Prawdziwość warunku wystarczającego => C456 wymusza prawdziwość warunki koniecznego ~> A456:
Prawo Kubusia:
C456: ~p=>~q = A456: p~>q =1

Analiza tabeli ABCD789 w mintermach:
3.
Prawdziwość kontrprzykładu B456:
B456: p~~>~q =1
Wymusza fałszywość warunku wystarczającego => A789:
A789: p=>q=0
4.
Fałszywość warunku wystarczającego A789 wymusza fałszywość warunku koniecznego ~> C789:
Prawo Kubusia:
A789: p=>q = C789: ~p~>~q =0

Stąd mamy symboliczną definicję implikacji odwrotnej p|~>q w warunkach wystarczających i koniecznych.
A: p~>q =1
A: p=>q =0
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami:
p|~>q = (p~>q)*~(p=>q) = 1*~(0) =1*1 =1

Doskonale widać że nagłówek w kolumnie „e”:
Ae: p~>q
Jest tożsamy wyłącznie z linią:
A456: p~>q =1
Stąd mamy definicję warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
Kod:

   p  q  p~>q
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0


III.
Wyprowadzenie definicji równoważności w warunkach wystarczających i koniecznych


Definicja równoważności p<=>q znana każdemu matematykowi
Kod:

Definicja            |Mintermy znane
zero-jedynkowa p<=>q |każdemu matematykowi
   p  q ~p ~q        |
A: 1  1  0  0   =1   | p~~> q = p* q =1
B: 1  0  0  1   =0   | p~~>~q = p*~q =0
C: 0  0  1  1   =1   |~p~~>~q =~p*~q =1
D: 0  1  1  0   =0   |~p~~> q =~p* q =0
   a  b  c  d    e     1    2         3

Kod:

Symboliczna definicja równoważności p<=>q
Definicja            |Mintermy
zero-jedynkowa       |
   p  q ~p ~q  p<=>q |
A: 1  1  0  0   =1   | p~~> q = p* q =1 | p=> q =1  | p~> q =1
B: 1  0  0  1   =0   | p~~>~q = p*~q =0 | p~~>~q=0  | p~~>~q=0
C: 0  0  1  1   =1   |~p~~>~q =~p*~q =1 |~p~>~q =1  |~p=>~q =1
D: 0  1  1  0   =0   |~p~~> q =~p* q =0 |~p~~>q =0  |~p~~>q =0
   a  b  c  d    e     1    2         3   4   5  6    7   8  9

Analiza tabeli ABCD456 w mintermach:
1.
Fałszywość kontrprzykładu B456:
B456: p~~>~q =0
Wymusza prawdziwość warunku wystarczającego A456:
A456: p=>q =1
2.
Prawdziwość warunku wystarczającego => A456 wymusza prawdziwość warunki koniecznego ~> C456:
Prawo Kubusia:
A456: p=>q = C456: ~p~>~q =1

Analiza tabeli ABCD789 w mintermach:
3.
Fałszywość kontrprzykładu D789:
D789: ~p~~>q =0
Wymusza prawdziwość warunku wystarczającego => C789:
C789: ~p=>~q=1
4.
Prawdziwość warunku wystarczającego C789 wymusza prawdziwość warunku koniecznego ~> A789:
Prawo Kubusia:
C789: ~p=>~q = A789: p~>q =1

Stąd mamy symboliczną definicję równoważności p<=>q w warunkach wystarczających i koniecznych:
A456: p=>q =1
A789: p~>q =1
Równoważność p<=>q to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami:
p|=>q = (p=>q)*(p~>q) =1*1 =1

Doskonale widać że nagłówek w kolumnie „e”:
Ae: p<=>q
Definiowany jest następująco:
Ae: p<=>q = (A456: p=>q)*(A789: p~>q)
co matematycznie oznacza:
p<=>q =1 <=> p=>q =1 i p~>q=1

Stąd mamy zero-jedynkową definicję równoważności p<=>q w warunkach wystarczających i koniecznych.
Kod:

   p  q  p<=>q=(p=>q)*(p~>q)
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =0


IV.
Wyprowadzenie definicji operatora chaosu p|~~>q w warunkach wystarczających i koniecznych


Definicja operatora chaosu znana każdemu matematykowi
Kod:

Definicja            |Mintermy znane
zero-jedynkowa       |każdemu matematykowi
   p  q ~p ~q  p~~>q |
A: 1  1  0  0   =1   | p~~> q = p* q =1
B: 1  0  0  1   =1   | p~~>~q = p*~q =1
C: 0  0  1  1   =1   |~p~~>~q =~p*~q =1
D: 0  1  1  0   =1   |~p~~> q =~p* q =1
   a  b  c  d    e     1    2         3

Kod:

Symboliczna definicja operatora chaosu p|~~>q
Definicja            |Mintermy
zero-jedynkowa       |
   p  q ~p ~q  p~~>q |
A: 1  1  0  0   =1   | p~~> q = p* q =1 | p=> q =0  | p~> q =0
B: 1  0  0  1   =1   | p~~>~q = p*~q =1 | p~~>~q=1  | p~~>~q=1
C: 0  0  1  1   =1   |~p~~>~q =~p*~q =1 |~p~>~q =0  |~p=>~q =0
D: 0  1  1  0   =1   |~p~~> q =~p* q =1 |~p~~>q =1  |~p~~>q =1
   a  b  c  d    e     1    2         3   4   5  6    7   8  9

Analiza tabeli ABCD456 w mintermach:
1.
Prawdziwość kontrprzykładu B456:
B456: p~~>~q =1
Wymusza fałszywość warunku wystarczającego => A456:
A456: p=>q =0
2.
Fałszywość warunku wystarczającego => A456 wymusza fałszywość warunku koniecznego ~> C456:
Prawo Kubusia:
A456: p=>q = C456: ~p~>~q =0

Analiza tabeli ABCD789 w mintermach:
3.
Prawdziwość kontrprzykładu D789:
D789: ~p~~>q =1
Wymusza fałszywość warunku wystarczającego => C789:
C789: ~p=>~q=0
4.
Fałszywość warunku wystarczającego C789 wymusza fałszywość warunku koniecznego ~> A789:
Prawo Kubusia:
C789: ~p=>~q = A789: p~>q =0

Stąd mamy definicję operatora chaosu p|~~>q w warunkach wystarczających => i koniecznych ~>:
A456: p=>q =0
A789: p~>q =0
Operator chaosu p|~~>q to brak zachodzenia zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami:
p|~~>q = ~(p=>q)*~(p~>q) = ~(0)*~(0) = 1*1 =1

Doskonale widać, że nagłówek w kolumnie „e”:
Ae: p~~>q
Jest tożsamy wyłącznie z linią:
A123: p~~>q =1

Gdyby nagłówek kolumny „e” był taki:
Ae: p~~>~q
To byłby tożsamy z linią:
B123: p~~>~q =1
itd.


Ostatnio zmieniony przez rafal3006 dnia Nie 21:44, 08 Paź 2017, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin