Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

AK2 Elementarz algebry Kubusia

 
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 24990
Przeczytał: 32 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 22:14, 10 Maj 2020    Temat postu: AK2 Elementarz algebry Kubusia

Algebra Kubusia - matematyka języka potocznego
2020-05-10

Część II
Elementarz algebry Kubusia


Jak czytać algebrę Kubusia?
Każda z siedmiu części zakłada prawie zerowy stan wiedzy początkowej.
Można wystartować z czytaniem od dowolnej części znając minimalnie algebrę Boole’a.
Szczególnie polecam część IV i V

Części:
AK1 Algebra Boole’a
AK2 Elementarz algebry Kubusia
AK3 Kubusiowa teoria zbiorów
AK4 Teoria zbiorów
AK5 Teoria zdarzeń
AK6 Obietnice i groźby
AK7 Teoria transformacji
AK8 Algebra Kubusia w dyskusji


Autor:
Kubuś ze 100-milowego lasu

Rozszyfrowali:
Rafal3006 i przyjaciele

Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki, Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors, Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Lucek, Andy72, Michał Dyszyński, Szaryobywatel i inni.

Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuję w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej.
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
4.
Irbisol - znakomity tester końcowej wersji algebry Kubusia, za wszelką cenę usiłujący ją obalić.
Czyż można sobie wymarzyć lepszego testera?

Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2020




Algebra Kubusia w pdf

AK1 Algebra Boole’a.pdf
[link widoczny dla zalogowanych]
AK2 Elementarz algebry Kubusia.pdf
[link widoczny dla zalogowanych]
AK3 Wstęp do Kubusiowej Teorii zbiorów.pdf
[link widoczny dla zalogowanych]
AK4 Kubusiowa teoria zbiorów.pdf
[link widoczny dla zalogowanych]
AK5 Kubusiowa teoria zdarzeń.pdf
[link widoczny dla zalogowanych]
AK6 Obietnice i groźby.pdf
[link widoczny dla zalogowanych]
AK7 Prawo transformacji.pdf
[link widoczny dla zalogowanych]
AK8 Algebra Kubusia w dyskusji.pdf
[link widoczny dla zalogowanych]



Spis treści
1.0 Elementarz algebry Kubusia 3
1.1 Relacje między zbiorami 3
1.1.1 Właściwości podzbioru => i nadzbioru ~> dla zbiorów tożsamych 5
1.2 Definicja kontrprzykładu w zbiorach 5
1.3 Definicja tożsamości matematycznej 6
1.4 Matematyczne związki podzbioru => i nadzbioru ~> 6
2.0 Definicja równoważności p<=>q w zbiorach 7
2.1 Elementarz równoważności p<=>q w zbiorach 8
2.2 Równoważność Pitagorasa w zbiorach 9
3.0 Definicja implikacji prostej p|=>q w zbiorach 11
3.1 Elementarz implikacji prostej p|=>q w zbiorach 11
3.2 Implikacja prosta P8|=>P2 w zbiorach nieskończonych 12
4.0 Definicja implikacji odwrotnej p|~>q w zbiorach 13
4.1 Elementarz implikacji odwrotnej p|~>q w zbiorach 14
4.2 Implikacja odwrotna P2|~>P8 w zbiorach nieskończonych 15
5.0 Definicja operatora chaosu p|~~>q w zbiorach 15
5.1 Elementarz operatora chaosu p|~~>q w zbiorach 16
5.2 Operator chaosu P8|~~>P3 w zbiorach nieskończonych 17



Wstęp:
Elementarz algebry Kubusia jest dowodem, iż można rozmawiać o logice matematycznej bez pojąć „warunek wystarczający” => czy też „warunek konieczny ~>” bowiem w algebrze Kubusia zachodzi tożsamość.
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
W przypadku zbiorów na mocy brzytwy Ockhama wycinamy prawe strony powyższych tożsamości i mamy algebrę Kubusia w 100% zgodną z aktualną logiką matematyczną ziemian.
Dlaczego skorzystałem tu z brzytwy Ockhama?
W teorii zbiorów, kluczowe definicje warunku wystarczającego => i koniecznego ~> w algebrze Kubusia i aktualnej logice matematycznej ziemian są sprzeczne.
Oczywistym jest, że chcę maksymalnie opóźnić wojnę na definicje która jest nieunikniona, dlatego w „Elementarzu algebry Kubusia” ograniczyłem się do definicji podzbioru => i nadzbioru ~> bo te definicje mamy wspólne.



1.0 Elementarz algebry Kubusia

Jedynym punktem wspólnym algebry Kubusia z logiką matematyczną ziemian są definicje podzbioru i nadzbioru. Pozostałe definicje w logice matematycznej mamy sprzeczne.

W algebrze Kubusia w zbiorach zachodzą tożsamości matematyczne:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Pojęcia warunek wystarczający i konieczny są w logice matematycznej ziemian fundamentalnie inne i na tym polu nie ma szans na dogadanie się.
Wynika z tego, że celowym jest skorzystanie tu z brzytwy Ockhama i zaprezentowanie algebry Kubusia tylko i wyłącznie przy pomocy naszych wspólnych definicji podzbioru i nadzbioru. Wszystko się znakomicie uprości i przede wszystkim póki co, nie dojdzie do wojny na definicje z matematykami.

1.1 Relacje między zbiorami

1.
Definicja elementu wspólnego zbiorów ~~>

Zbiór p ma element wspólny ~~> ze zbiorem q wtedy i tylko wtedy gdy iloczyn logiczny tych zbiorów nie jest zbiorem pustym
p~~>q = p*q =1 - gdy relacja elementu wspólnego zbiorów ~~> jest spełniona
Inaczej:
p~~>q = p*q =0 - gdy relacja elementu wspólnego zbiorów ~~> nie jest spełniona, zbiory rozłączne
W iloczynie logicznym zbiorów p*q nie chodzi o wyznaczenie pełnego zbioru wynikowego, lecz tylko i wyłącznie o znalezienie jednego elementu wspólnego, o czym informuje symbol elementu wspólnego ~~>, dlatego dopuszczalny jest tu zapis skrócony p~~>q.
Zauważmy, że jeśli zbiory p i q są rozłączne to zmuszeni jesteśmy do wyznaczenia pełnego iloczynu logicznego zbiorów co jest problemem przy zbiorach nieskończonych - tu po prostu elementu wspólnego zbiorów ~~> nie znajdziemy.
Zachodzi matematyczna tożsamość pojęć:
Definicja elementu wspólnego zbiorów ~~> = spełniona relacja elementu wspólnego ~~> zbiorów.

Dowód iż definicja elementu wspólnego zbiorów ~~> funkcjonuje niejawnie w teorii zbiorów ziemian:
[link widoczny dla zalogowanych]
mathedu napisał:

Zbiory rozłączne
Zbiory, których iloczyn jest zbiorem pustym, nazywamy rozłącznymi:
p*q =[]

Oczywisty wniosek:
Jeśli iloczyn logiczny zbiorów p*q nie jest zbiorem pustym to zbiory mają element wspólny ~~>.

1.
Definicja podzbioru =>:

Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona, zbiór p jest podzbiorem => zbioru q.
inaczej:
p=>q =0 - gdy relacja podzbioru => nie jest (=0) spełniona, zbiór p nie jest podzbiorem => zbioru q
Zachodzi matematyczna tożsamość pojęć:
Definicja podzbioru => = spełniona relacja podzbioru =>

Definicja podzbioru => w rachunku zero-jedynkowym:
p=>q = ~p+q

Dowód iż definicja podzbioru z algebry Kubusia jest identyczna jak w teorii zbiorów ziemian:
[link widoczny dla zalogowanych]
sjp napisał:

podzbiór - część danego zbioru


3.
Definicja nadzbioru ~>

Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona, zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0 - gdy relacja nadzbioru ~> nie jest (=0) spełniona, zbiór p nie jest nadzbiorem ~> zbioru q
Zachodzi matematyczna tożsamość pojęć:
Definicja nadzbioru ~> = spełniona relacja nadzbioru ~>

Definicja nadzbioru ~> w rachunku zero-jedynkowym:
p~>q = p+~q

Dowód iż definicja nadzbioru z algebry Kubusia jest identyczna jak w teorii zbiorów ziemian:
[link widoczny dla zalogowanych]
sjp napisał:

nadzbiór - w matematyce, dla danego zbioru: każdy zbiór zawierający wszystkie jego elementy


1.1.1 Właściwości podzbioru => i nadzbioru ~> dla zbiorów tożsamych

Właściwości podzbioru => i nadzbioru ~> dla zbiorów tożsamych:
Każdy zbiór jest podzbiorem => siebie samego
Każdy zbiór jest nadzbiorem ~> siebie samego
Wynika to bezpośrednio z definicji podzbioru => i nadzbioru ~>

1.2 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla relacji podzbioru p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość relacji podzbioru p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość relacji podzbioru p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Intuicyjnie jest oczywistym, że jeśli zbiór p jest podzbiorem => zbioru q:
A1: p=>q =1
To kontrprzykład ~~> A1’ będzie fałszem:
A1’: p~~>~q = p*~q =[] =0 - bo zbiory p i ~q na 100% są rozłączne.

Równie intuicyjne jest, że jeśli relacja podzbioru nie jest spełniona:
A1: p=>q =0
To kontrprzykład A1’ dla fałszywej relacji podzbioru A1 będzie prawdą
A1: p~~>~q=1
Z tego faktu ziemscy matematycy korzystają garściami intuicyjnie nie znając poprawnej matematycznie definicji kontrprzykładu.
Dowód:
A1.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% jest podzielna przez 8
P2=>P8 =0 bo kontrprzykład: 2
To co wyżej wie każdy matematyk.
Żaden z ziemskich matematyków nie zna poprawnej definicji kontrprzykładu, czyli że chodzi to o znalezienie jednego elementu wspólnego zbiorów P2 i ~P8:
P2~~>~P8=P2*~P8 =1
Tych zbiorów:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Dziedzina minimalna:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8

1.3 Definicja tożsamości matematycznej

Definicja tożsamości matematycznej:
Dwa zbiory (pojęcia) p i q są matematycznie tożsame p=q wtedy i tylko wtedy są w relacji równoważności p<=>q i odwrotnie.
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q =1
Inaczej:
p=q =0 - pojęcia są różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ##
Dwa zbiory (pojęcia) są różne ma mocy definicji ## wtedy i tylko wtedy gdy nie są matematycznie tożsame.
Matematycznie zachodzi:
(A1: p=>q = ~p+q) <=> (B1: p~>q=p+~q) =0 - równoważność fałszywa
Dlatego mamy tu znaczek różne na mocy definicji ##:
(A1: p=>q = ~p+q) ## (B1: p~>q = p+~q)

1.4 Matematyczne związki podzbioru => i nadzbioru ~>

Definicja podzbioru => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja nadzbioru ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji

Na mocy rachunku zero-jedynkowego mamy:
Kod:

Matematyczne związki relacji podzbioru => i nadzbioru ~>:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla relacji podzbioru =>:
A1: p=>q = A4: ~q=>~p
##
B4: q=>p = B2: ~p=>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla relacji nadzbioru ~>:
A3: q~>p = A2: ~p~>~q
##
B1: p~>q = B4: ~q~>~p

Gdzie:
## - różne na mocy definicji


2.0 Definicja równoważności p<=>q w zbiorach

W kolejnych rozdziałach zajmiemy się badaniem poprawności Kubusiowej teorii zbiorów na gruncie praw logiki matematycznej wynikających z rachunku zero-jedynkowego.
W elementarzu posługiwać się będziemy zbiorami minimalnymi gdzie wszelkie relacje między badanymi zbiorami widać doskonale i nic nie musimy udowadniać matematycznie. W logice matematycznej będzie to odpowiednik liczenia na paluszkach do 10 znanego z I klasy szkoły podstawowej.
Podamy też przykłady przełożenia 1:1 elementarza na twierdzenia czysto matematyczne operujące na zbiorach nieskończonych
Zaczynamy od definicji równoważności.

Właściwości podzbioru => i nadzbioru ~> dla zbiorów tożsamych:
Każdy zbiór jest podzbiorem => siebie samego
Każdy zbiór jest nadzbiorem ~> siebie samego
Wynika to bezpośrednio z definicji podzbioru => i nadzbioru ~>

Definicja równoważności p<=>q w zbiorach:
Zbiór p jest jednocześnie podzbiorem => i nadzbiorem ~> zbioru q, co oznacza, że zbiory p i q są ze sobą w relacji tożsamości matematycznej.
Zastrzeżenie:
Dziedzina musi tu być szersza od sumy logicznej zbiorów p+q
To zastrzeżenie jest konieczne dla istnienia zbiorów niepustych ~p i ~q.
W algebrze Kubusia wszelkie argumenty muszą być zbiorami (pojęciami) niepustymi, musimy po prostu rozumieć co mówimy.
Innymi słowy:
By rozumieć co znaczy pojęcie „pies” musimy rozumieć pojęcie „nie pies”

Definicja podstawowa równoważności p<=>q w relacjach podzbioru => i nadzbioru ~>:
Równoważność to jednoczesne zachodzenie zarówno relacji podzbioru => jak i nadzbioru ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - relacja podzbioru => spełniona (=1)
B1: p~>q =1 - relacja nadzbioru ~> spełniona (=1)

Spełniona definicja równoważności oznacza, że zbiory p i q są ze sobą w relacji tożsamości matematycznej.

Definicja tożsamości matematycznej:
Dwa zbiory (pojęcia) p i q są matematycznie tożsame p=q wtedy i tylko wtedy są w relacji równoważności p<=>q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q =1
Inaczej:
p=q =0 - pojęcia są różne na mocy definicji ##

Stąd mamy definicję równoważności w równaniu logicznym:
Definicja podstawowa równoważności p<=>q:
p<=>q = (A1: p=>q)* (B1: p~>q) =1*1 =1

Definicja podzbioru => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Definicja nadzbioru ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
stąd:
Definicja równoważności p<=>q zdefiniowana wszystkimi możliwymi relacjami podzbiorów => i nadzbiorów ~> wynikającymi z rachunku zero-jedynkowego:
Kod:

Równoważność p<=>q w relacjach podzbioru => i nadzbioru ~>
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1 =1
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnej relacji Ax i prawdziwość dowolnej relacji Bx.
Sprawdźmy poznaną wyżej teorię podzbioru => i nadzbioru ~> na zbiorach minimalnych.

2.1 Elementarz równoważności p<=>q w zbiorach

Na mocy definicji równoważności zbiory p i q muszą być tożsame.

Przykład:
Zdefiniujmy zbiory minimalne spełniające relację równoważności p<=>q:
p=[1]
q=[1]
Dziedzina musi być szersza od sumy logicznej zbiorów:
p+q = [1]+[1] =[1]
Przyjmujemy dziedzinę:
D=[1,2]
Obliczamy przeczenia zbiorów p i q rozumiane jako ich uzupełnienia do dziedziny D
~p=[D-p] = [1,2]-[1] =[2]
~q=[D-p]=[1,2]-[1] =[2]
Podstawmy obliczone zbiory do związków podzbioru => i nadzbioru ~> dla równoważności <=>:
Kod:

T1
Równoważność p<=>q w relacjach podzbioru => i nadzbioru ~>
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1 =1
A: 1: p=>q     = 2:~p~>~q   [=] 3: q~>p     = 4:~q=>~p   =1
A: 1: [1]=>[1] = 2:[2]~>[2] [=] 3: [1]~>[1] = 4:[2]=>[2] =1
##
B: 1: p~>q     = 2:~p=>~q   [=] 3: q=>p     = 4:~q~>~p   =1
B: 1: [1]~>[1] = 2:[2]=>[2] [=] 3: [1]=>[1] = 4:[2]~>[2] =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że wszystkie relacje zachodzą bo:
Każdy zbiór jest podzbiorem => siebie samego
Każdy zbiór jest nadzbiorem ~> siebie samego
Wynika to bezpośrednio z definicji podzbioru => i nadzbioru ~>

2.2 Równoważność Pitagorasa w zbiorach

Równoważność Pitagorasa dla trójkątów prostokątnych:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1
Twierdzenie proste Pitagorasa TP=>SK=1 i twierdzenie odwrotne Pitagorasa SK=>TP=1 zostały udowodnione wieki temu zatem równoważność Pitagorasa dla trójkątów prostokątnych jest prawdziwa.

Podstawmy tą równoważność do tabeli T1 z elementarza równoważności.
Kod:

T2
Równoważność p<=>q w relacjach podzbioru => i nadzbioru ~>
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1 =1
A: 1: p=>q     = 2:~p~>~q   [=] 3: q~>p     = 4:~q=>~p   =1
A: 1: [1]=>[1] = 2:[2]~>[2] [=] 3: [1]~>[1] = 4:[2]=>[2] =1
A: 1: TP=>SK   = 2:~TP~>~SK [=] 3: SK~>TP   = 4:~SK=>~TP =1
##
B: 1: p~>q     = 2:~p=>~q   [=] 3: q=>p     = 4:~q~>~p   =1
B: 1: [1]~>[1] = 2:[2]=>[2] [=] 3: [1]=>[1] = 4:[2]~>[2] =1
B: 1: TP~>SK   = 2:~TP=>~SK [=] 3: SK=>TP   = 4:~SK~>~TP =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Równoważność Pitagorasa dla trójkątów prostokątnych wymusza tożsamość zbiorów TP=SK (i odwrotnie)
TP=SK = (A1: TP=>SK)*(B3: SK=>TP) = TP<=>SK

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Stąd mamy:
Równoważność Pitagorasa dla trójkątów prostokątnych TP<=>SK wymusza równoważność Pitagorasa dla trójkątów nieprostokątnych ~TP<=>~SK (i odwrotnie)
TP<=>SK = ~TP<=>~SK

Znaczenie tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Równoważność Pitagorasa dla trójkątów nieprostokątnych:
Trójkąt nie jest prostokątny wtedy i tylko wtedy gdy nie zachodzi w nim suma kwadratów
~TP<=>~S = (B2: ~TP=>~SK)*(A4: ~SK=>~TP) =1*1 =1

Równoważność Pitagorasa dla trójkątów prostokątnych wymusza tożsamość zbiorów ~TP=~SK (i odwrotnie):
~TP=~SK = (B2: ~TP=>~SK)*(A4: ~SK=>~TP) = ~TP<=>~SK

Podsumujmy równoważność Pitagorasa w tabeli prawdy:
Kod:

Równoważność dla TP  [=] Równoważność dla ~TP
TP<=>SK              [=] ~p<=>~q
ALE!
---------------------   ---------------------
|Zbiór: TP=SK       | # | Zbiór: ~TP=~SK    |
---------------------   ---------------------

Definicja znaczka #:
Zbiór po jednej stronie znaczka # jest uzupełnieniem do wspólnej dziedziny dla drugiej strony.

Dla równoważności Pitagorasa przyjmujemy dziedzinę minimalną:
ZWT - zbiór wszystkich trójkątów
Stąd:
TP+~TP =ZWT =1 - zbiór ~TP jest uzupełnieniem do dziedziny dla zbioru TP
TP*~TP =[] =0 - zbiory TP i ~TP są rozłączne

Prawo podwójnego przeczenia w równoważności w zbiorach:
~(~TP)=TP - zaprzeczeniem zbioru ~TP w dziedzinie ZWT jest zbiór TP
To samo w języku potocznym:
Nie jest prawdą (~) że ten trójkąt nie jest prostokątny (~TP) = prawdą jest, że ten trójkąt jest prostokątny (TP)
~(~TP)=TP

Prawo tożsamości:
~(TP) = ~TP - zaprzeczeniem zbioru TP jest zbiór ~TP
Zaprzeczeniem (~) zbioru trójkątów prostokątnych TP jest zbiór trójkątów nieprostokątnych ~TP
To samo w języku potocznym:
Nie jest prawdą (~), że ten trójkąt jest prostokątny = prawdą jest, ten trójkąt jest nieprostokątny
~(TP) = ~TP

3.0 Definicja implikacji prostej p|=>q w zbiorach

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Zastrzeżenie:
Dziedzina musi tu być szersza od sumy logicznej zbiorów p+q
To zastrzeżenie jest konieczne dla istnienia zbiorów niepustych ~p i ~q.
W algebrze Kubusia wszelkie argumenty muszą być zbiorami (pojęciami) niepustymi, musimy po prostu rozumieć co mówimy.
Innymi słowy:
By rozumieć co znaczy pojęcie „pies” musimy rozumieć pojęcie „nie pies”

Definicja podstawowa implikacji prostej p|=>q w relacjach podzbioru => i nadzbioru ~>:
Implikacja prosta p|=>q to zachodzenie wyłącznie relacji podzbioru => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - relacja podzbioru => spełniona (=1)
B1: p~>q =0 - relacja nadzbioru ~> nie jest spełniona (=0)

Stąd mamy definicję implikacji prostej p|=>q w równaniu logicznym:
Definicja podstawowa implikacji prostej p|=>q:
p|=>q = (A1: p=>q)* ~(B1: p~>q) =1*~(0) =1*1 =1

Definicja podzbioru => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Definicja nadzbioru ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
stąd:
Definicja implikacji prostej p|=>q zdefiniowana wszystkimi możliwymi relacjami podzbiorów => i nadzbiorów ~> wynikającymi z rachunku zero-jedynkowego:
Kod:

Implikacja prosta p|=>q w relacjach podzbioru => i nadzbioru ~>
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić iż mamy do czynienia z implikacją prostą p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnej relacji Ax i fałszywość dowolnej relacji Bx.
Sprawdźmy poznaną wyżej teorię podzbioru => i nadzbioru ~> na zbiorach minimalnych.

3.1 Elementarz implikacji prostej p|=>q w zbiorach

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q

Przykład:
Zdefiniujmy zbiory minimalne spełniające definicję implikacji prostej p|=>q:
p=[1]
q=[1,2]
Dziedzina musi być szersza od sumy logicznej zbiorów:
p+q = [1]+[1,2] =[1,2]
Przyjmujemy dziedzinę:
D=[1,2,3]
Obliczamy przeczenia zbiorów p i q rozumiane jako ich uzupełnienia do dziedziny D
~p=[D-p] = [1,2,3]-[1] =[2,3]
~q=[D-p]=[1,2,3]-[1,2] =[3]
Podsumowując mamy:
p=[1]
q=[1,2]
~p=[2,3]
~q=[3]
Podstawmy obliczone zbiory do związków podzbioru => i nadzbioru ~> dla implikacji prostej p|=>q:
Kod:

Implikacja prosta p|=>q w relacjach podzbioru => i nadzbioru ~>
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1
A: 1: p=>q       = 2:~p~>~q     [=] 3: q~>p       = 4:~q=>~p     =1
A: 1: [1]=>[2,3] = 2:[2,3]~>[3] [=] 3: [2,3]~>[1] = 4:[3]=>[2,3] =1
##
B: 1: p~>q       = 2:~p=>~q     [=] 3: q=>p       = 4:~q~>~p     =0
B: 1: [1]~>[2,3] = 2:[2,3]=>[3] [=] 3: [2,3]=>[1] = 4:[3]~>[2,3] =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać spełnienie wszystkich czterech relacji w linii Ax.
W linii Bx wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.

3.2 Implikacja prosta P8|=>P2 w zbiorach nieskończonych

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest jednocześnie podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q

Wypowiedzmy twierdzenie matematyczne:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…] i nie jest tożsamy z P2, zatem na mocy definicji mamy tu do czynienia z operatorem implikacji prostej P8|=>P2:
P8|=>P2 = (A1:P8=>P2)*~(B1: P8~>P2) = 1*~(0) =1*1 =1

Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
i wyznaczmy wszystkie możliwe przeczenia zbiorów:
P8=[8,16,24..]
P2=[2,4,6,8..]
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
~P2=[LN-P2]=[1,3,5,7,9..]

Podstawmy nasze zbiory nieskończone do elementarza implikacji prostej p|=>q:
Kod:

Implikacja prosta p|=>q w relacjach podzbioru => i nadzbioru ~>
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1
A: 1: p=>q       = 2:~p~>~q     [=] 3: q~>p       = 4:~q=>~p     =1
A: 1: [1]=>[2,3] = 2:[2,3]~>[3] [=] 3: [2,3]~>[1] = 4:[3]=>[2,3] =1
A: 1: P8=>P2     = 2:~P8~>~P2   [=] 3: P2~>P8     = 4:~P2=>~P8   =1
##
B: 1: p~>q       = 2:~p=>~q     [=] 3: q=>p       = 4:~q~>~p     =0
B: 1: [1]~>[2,3] = 2:[2,3]=>[3] [=] 3: [2,3]=>[1] = 4:[3]~>[2,3] =0
B: 1: P8~>P2     = 2:~P8=>~P2   [=] 3: P2=>P8     = 4:~P2~>~P8   =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać spełnienie wszystkich relacji w linii Ax.
W linii Bx wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.

W przypadku zbiorów nieskończonych P8 i P2 możemy być pewni identycznych relacji jak w zbiorze elementarzowym, jak ktoś jest masochistą to może sobie wszystkie relacje w zbiorach nieskończonych udowodnić.

4.0 Definicja implikacji odwrotnej p|~>q w zbiorach

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Zastrzeżenie:
Dziedzina musi tu być szersza od sumy logicznej zbiorów p+q
To zastrzeżenie jest konieczne dla istnienia zbiorów niepustych ~p i ~q.
W algebrze Kubusia wszelkie argumenty muszą być zbiorami (pojęciami) niepustymi, musimy po prostu rozumieć co mówimy.
Innymi słowy:
By rozumieć co znaczy pojęcie „pies” musimy rozumieć pojęcie „nie pies”

Definicja podstawowa implikacji odwrotnej p|~>q w relacjach podzbioru => i nadzbioru ~>:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie relacji nadzbioru ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - relacja podzbioru => nie jest spełniona (=0)
B1: p~>q =1 - relacja nadzbioru ~> spełniona (=1)

Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
Definicja podstawowa implikacji odwrotnej p|~>q:
p|~>q = ~(A1: p=>q)* (B1: p~>q) = ~(0)*1 = 1*1 =1

Definicja podzbioru => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Definicja nadzbioru ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
stąd:
Definicja implikacji odwrotnej p|~>q zdefiniowana wszystkimi możliwymi relacjami podzbiorów => i nadzbiorów ~> wynikającymi z rachunku zero-jedynkowego:
Kod:

Implikacja odwrotna p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić iż mamy do czynienia z implikacją odwrotną p|~>q potrzeba i wystarcza udowodnić fałszywość dowolnej relacji Ax i prawdziwość dowolnej relacji Bx.
Sprawdźmy poznaną wyżej teorię podzbioru => i nadzbioru ~> na zbiorach minimalnych.

4.1 Elementarz implikacji odwrotnej p|~>q w zbiorach

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q

Przykład:
Zdefiniujmy zbiory minimalne spełniające definicję implikacji odwrotnej p|~>q:
p=[1,2]
q=[1]
Dziedzina musi być szersza od sumy logicznej zbiorów:
p+q = [1,2]+[1] =[1,2]
Przyjmujemy dziedzinę:
D=[1,2,3]
Obliczamy przeczenia zbiorów p i q rozumiane jako ich uzupełnienia do dziedziny D
~p=[D-p] = [1,2,3]-[1,2] =[3]
~q=[D-p]=[1,2,3]-[1] =[2,3]
Podstawmy obliczone zbiory do związków podzbioru => i nadzbioru ~> dla implikacji odwrotnej p|~>q:

Kod:

Implikacja odwrotna p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
A: 1: p=>q       = 2:~p~>~q     [=] 3: q~>p       = 4:~q=>~p     =0
A: 1: [1,2]=>[1] = 2:[3]~>[2,3] [=] 3: [1]~>[1,2] = 4:[2,3]=>[3] =0
##
B: 1: p~>q       = 2:~p=>~q     [=] 3: q=>p       = 4:~q~>~p     =1
B: 1: [1,2]~>[1] = 2:[3]=>[2,3] [=] 3: [1]=>[1,2] = 4:[2,3]~>[3] =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać spełnienie wszystkich czterech relacji w linii Bx.
W linii Ax wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.


4.2 Implikacja odwrotna P2|~>P8 w zbiorach nieskończonych

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q

Wypowiedzmy zdanie:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Zbiór P2=[2,4,6,8…] jest nadzbiorem ~> zbioru P8=[8,16,24..] i nie jest tożsamy z P8, zatem na mocy definicji mamy tu do czynienia z operatorem implikacji odwrotnej P2|~>P8
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = ~(0)*1 =1*1 =1

Prawo Tygryska:
B1: P2~>P8 = B3: P8=>P2
Z prawa tygryska wynika, że zamiast udowadniać prawdziwość relacji nadzbioru B1: P2~>P8 możemy udowodnić prawdziwość relacji podzbioru B3: P8=>P2, co jest łatwiejsze w dowodzeniu.

Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
i wyznaczmy wszystkie możliwe przeczenia zbiorów:
P2=[2,4,6,8..]
P8=[8,16,24..]
~P2=[LN-P2]=[1,3,5,7,9..]
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]

Podstawmy nasze zbiory nieskończone do elementarza implikacji odwrotnej P2|~>P8:
Kod:

Implikacja odwrotna p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
A: 1: p=>q       = 2:~p~>~q     [=] 3: q~>p       = 4:~q=>~p     =0
A: 1: [1,2]=>[1] = 2:[3]~>[2,3] [=] 3: [1]~>[1,2] = 4:[2,3]=>[3] =0
A: 1: P2=>P8     = 2:~P2~>~P8   [=] 3: P8~>P2     = 4:~P8=>~P2   =0
##
B: 1: p~>q       = 2:~p=>~q     [=] 3: q=>p       = 4:~q~>~p     =1
B: 1: [1,2]~>[1] = 2:[3]=>[2,3] [=] 3: [1]=>[1,2] = 4:[2,3]~>[3] =1
B: 1: P2~>P8     = 2:~P2=>~P8   [=] 3: P8=>P2     = 4:~P8~>~P2   =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać spełnienie wszystkich czterech relacji w linii Bx.
W linii Ax wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.

W przypadku zbiorów nieskończonych P2 i P8 możemy być pewni identycznych relacji jak w zbiorze elementarzowym, jak ktoś jest masochistą to może sobie wszystkie relacje w zbiorach nieskończonych udowodnić.


5.0 Definicja operatora chaosu p|~~>q w zbiorach

Definicja operatora chaosu p|~~>q w zbiorach:
Zbiór p nie jest podzbiorem => zbioru q, jak również nie jest nadzbiorem ~> zbioru q
Zastrzeżenie:
Dziedzina musi tu być szersza od sumy logicznej zbiorów p+q
To zastrzeżenie jest konieczne dla istnienia zbiorów niepustych ~p i ~q.
W algebrze Kubusia wszelkie argumenty muszą być zbiorami (pojęciami) niepustymi, musimy po prostu rozumieć co mówimy.
Innymi słowy:
By rozumieć co znaczy pojęcie „pies” musimy rozumieć pojęcie „nie pies”

Definicja podstawowa operatora chaosu p|~~>q w relacjach podzbioru => i nadzbioru ~>:
Operator chaosu p|~~>q to nie zachodzenie ani relacji podzbioru =>, ani też relacji nadzbioru ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - relacja podzbioru => nie jest spełniona (=0)
B1: p~>q =0 - relacja nadzbioru ~> nie jest spełniona (=0)

Stąd mamy definicję operatora chaosu p|~~>q w równaniu logicznym:
Definicja podstawowa operatora chaosu p|~~>q:
p|~>q = ~(A1: p=>q)* ~(B1: p~>q) =~(0)*~(0) =1*1 =1

Definicja podzbioru => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Definicja nadzbioru ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
stąd:
Definicja operatora chaosu p|~>q zdefiniowana wszystkimi możliwymi relacjami podzbiorów => i nadzbiorów ~> wynikającymi z rachunku zero-jedynkowego:
Kod:

Operator chaosu p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0) =1*1 =1
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Aby udowodnić iż mamy do czynienia z operatorem chaosu p|~~>q potrzeba i wystarcza udowodnić fałszywość dowolnej relacji Ax i fałszywość dowolnej relacji Bx.
Sprawdźmy poznaną wyżej teorię podzbioru => i nadzbioru ~> na zbiorach minimalnych.


5.1 Elementarz operatora chaosu p|~~>q w zbiorach

Definicja operatora chaosu p|~~>q w zbiorach:
Zbiór p nie jest podzbiorem => zbioru q, jak również nie jest nadzbiorem ~> zbioru q

Przykład:
Zdefiniujmy zbiory minimalne spełniające definicję operatora chaosu:
p=[1,2]
q=[1,3]
Sprawdźmy czy powyższe zbiory spełniają definicję operatora chaosu p|~~>q:
A1: p=>q = [1,2]=>[1,3] =0 - zbiór p nie jest podzbiorem => zbioru q
B1: p~>q = [1,2]~>[1,3] =0 - zbiór p nie jest nadzbiorem ~> zbioru q
Wniosek:
Zbiory p i q spełniają definicję operatora chaosu p|~~>q

Dziedzina musi być szersza od sumy logicznej zbiorów:
p+q = [1,2]+[1,3] =[1,2,3]
Przyjmujemy dziedzinę:
D=[1,2,3,4]
Obliczamy przeczenia zbiorów p i q rozumiane jako ich uzupełnienia do dziedziny D
~p=[D-p] = [1,2,3,4]-[1,2] =[3,4]
~q=[D-p]=[1,2,3,4]-[1,3] =[2,4]
Podstawmy obliczone zbiory do związków podzbioru => i nadzbioru ~> dla operatora chaosu p|~~>q:
Kod:

Operator chaosu p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0) =1*1 =1
A: 1: p=>q         = 2:~p~>~q       [=] 3: q~>p         = 4:~q=>~p       =0
A: 1: [1,2]=>[1,3] = 2:[3,4]~>[2,4] [=] 3: [1,3]~>[1,2] = 4:[2,4]=>[3,4] =0
##
B: 1: p~>q         = 2:~p=>~q       [=] 3: q=>p         = 4:~q~>~p       =0
B: 1: [1,2]~>[1,3] = 2:[3,4]=>[2,4] [=] 3: [1,3]=>[1,2] = 4:[2,4]~>[3,4] =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że wszystkie cztery relacje Ax są fałszem
W linii Bx również wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.


5.2 Operator chaosu P8|~~>P3 w zbiorach nieskończonych

Definicja operatora chaosu p|~~>q w zbiorach:
Zbiór p nie jest podzbiorem => zbioru q, jak również nie jest nadzbiorem ~> zbioru q

Wypowiedzmy zdanie:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3=P8*P3 =1 bo 24
Definicja elementu wspólnego zbiorów spełniona.

Badamy relację podzbioru P8=>P3
A1: P8=>P3 =0
Zbiór P8=[8,16,24..] nie jest (=0) podzbiorem => P3=[3,6,9..]
Badamy relację nadzbioru P8~>P3:
B1: P8~>P3 =0
Zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> P3=[3,6,9..]

Stąd mamy pewność iż mamy do czynienia z operatorem chaosu P8|=>P3:
P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3) = ~(0)*~(0)=1*1=1

Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
i wyznaczmy wszystkie możliwe przeczenia zbiorów:
P8=[8,16,24..]
P3=[3,6,9..]
~P8=[1,2,3,4,5,6,7..9..]
~P3=[1,2..4,5..7,8..]

Kod:

Operator chaosu p|~>q w relacjach podzbioru => i nadzbioru ~>
p|~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0) =1*1 =1
A: 1: p=>q         = 2:~p~>~q       [=] 3: q~>p         = 4:~q=>~p       =0
A: 1: [1,2]=>[1,3] = 2:[3,4]~>[2,4] [=] 3: [1,3]~>[1,2] = 4:[2,4]=>[3,4] =0
A: 1: P8=>P3       = 2:~P8~>~P3     [=] 3: P3~>P8       = 4:~P3=>~P8     =0
##
B: 1: p~>q         = 2:~p=>~q       [=] 3: q=>p         = 4:~q~>~p       =0
B: 1: [1,2]~>[1,3] = 2:[3,4]=>[2,4] [=] 3: [1,3]=>[1,2] = 4:[2,4]~>[3,4] =0
B: 1: P8~>P3       = 2:~P8=>~P3     [=] 3: P3=>P8       = 4:~P3~>~P8     =0
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że wszystkie cztery relacje Ax są fałszem
W linii Bx również wszystkie cztery relacje są fałszem.
Wniosek:
W naszym świecie rzeczywistym Kubusiowa teoria zbiorów działa doskonale.

W przypadku zbiorów nieskończonych P8 i P3 możemy być pewni identycznych relacji jak w zbiorze elementarzowym, jak ktoś jest masochistą to może sobie wszystkie relacje w zbiorach nieskończonych udowodnić.


Ostatnio zmieniony przez rafal3006 dnia Czw 18:30, 11 Cze 2020, w całości zmieniany 12 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 24990
Przeczytał: 32 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 23:04, 10 Maj 2020    Temat postu:

.....
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin