 |
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Pią 17:09, 14 Mar 2025 Temat postu: |
|
|
Właśnie obalam. A ty próbujesz znowu uciekać.
Dostałeś odpowiedź, ale i tak pytasz w kółko o to samo.
|
|
Powrót do góry |
|
 |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 18:00, 14 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | Właśnie obalam. A ty próbujesz znowu uciekać.
Dostałeś odpowiedź, ale i tak pytasz w kółko o to samo. |
Chcesz obalać?
Przecież ty nie masz co obalać bo nie czytasz co do ciebie piszę, zatem obalać to sobie możesz - wyłącznie twoje schizofreniczne rojenia.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-11150.html#835673
rafal3006 napisał: | Irbisol napisał: | Po co mam coś "słuchać", skoro w swojej schizofrenii widzisz jakieś p <=> ~q, co dodatkowo i tak nie ma znaczenia (w sensie to ~ przy q). |
Krótka piłka:
Czy przeczytasz moje wyjaśnienie w którym miejscu popełniasz błąd?
TAK/NIE
P.S.
Klasyczny objaw schizofrenii to paniczny strach przed wysłuchaniem co ma do powiedzenia druga strona w dowolnym temacie. |
Podpowiedź:
Przeczenie nie "~" jest tu kluczowe i najważniejsze, ale cóż, schizofrenik nie chce wiedzieć dlaczego!
.. bo jego schizofreniczny gówno-świat by mu się zawalił.
Ostatnio zmieniony przez rafal3006 dnia Pią 18:04, 14 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Pią 18:08, 14 Mar 2025 Temat postu: |
|
|
To, czy jest przeczenie, czy nie, jest kwestią czysto umowną, schizofreniku.
Wcześniej to uzasadniłem i nie miałeś uwag.
Zresztą - wskaż to ~q tak z ciekawości.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 18:51, 14 Mar 2025 Temat postu: |
|
|
... i co, zatkało kakao?
Irbisol napisał: | To, czy jest przeczenie, czy nie, jest kwestią czysto umowną, schizofreniku.
Wcześniej to uzasadniłem i nie miałeś uwag.
Zresztą - wskaż to ~q tak z ciekawości. |
OT, TO!
Ciekawość = pierwszy krok do wyjście ze świata ciemności (KRZ) do świata jasności (algebra Kubusia)
Dowód iż przecznia "~" w tabeli prawdy operatorów logicznych (w tym operatora równoważności) są kluczowe i najważniejsze na przykłdzie operatora równoważności p|<=>q masz w zapisie ogólnym (formalnym) niżej.
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680051
Algebra Kubusia napisał: |
2.14 Równoważność p<=>q
Definicja równoważności p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1=1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Do tego aby zaszło q potrzeba ~> (B1) i wystarcza => aby zaszło p
Prawo Irbisa:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zdarzeń/zbiorów p=q (i odwrotnie)
Dowód (pkt. 2.9)
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa oraz definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>
Kod: |
TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
-----------------------------------------------------------------------
Równoważność <=> definiuje: | Równoważność <=> definiuje:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1
tożsamość zdarzeń/zbiorów: | tożsamość zdarzeń/zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
Prawa Sowy:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość pozostałych zdań
2.14.1 Operator równoważności p|<=>q
Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
Matematycznie zachodzi tożsamość logiczna [=]:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) [=] A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q)
Dowód na mocy praw Sowy jest oczywisty
Dowód alternatywny:
Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+):
A1B1: p<=>q = p*q+~p*~q (pkt. 2.10)
Mamy do udowodnienia tożsamość logiczną [=]:
A1B1: p<=>q [=] A2B2: ~p<=>~q
Rozwijamy prawą stronę definicją <=>:
A2B2: ~p<=>~q = (~p)*(~q) + ~(~p)*~(~q)= ~p*~q + p*q = p*q+~p*~q = A1B1: p<=>q
cnd
A1B1:
Co może się wydarzyć jeśli zajdzie p?
Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = gwarancja matematyczna => = na 100% => etc
Innymi słowy:
Zawsze gdy zajdzie p, zajdzie q
Prawdziwy warunek wystarczający A1: p=>q=1 wymusza fałszywy kontrprzykład A1' (i odwrotnie)
A1'.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=p*~q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: p i ~q
To jest dowód "nie wprost" fałszywości zdania A1' na mocy definicji kontrprzykładu.
… a jeśli zajdzie ~p?
Idziemy do kolumny A2B2.
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) =1*1=1
Czytamy:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście ~p jest (=1) konieczne ~> (A2) i wystarczające => (B2) dla zajścia ~q
Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Prawdziwy warunek wystarczający B2: ~p=>~q=1 wymusza fałszywy kontrprzykład B2' (i odwrotnie)
B2'.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=~p*q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Nie istnieje (=0) wspólny element zbiorów ~~>: ~p i q
To jest dowód "nie wprost" fałszywości zdania B2' na mocy definicji kontrprzykładu.
Podsumowanie:
Jak widzimy, istotą operatora równoważności p|<=>q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna po stronie ~p (zdanie B2)
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co się stanie jak zajdzie ~p?
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co się stanie jak zajdzie p?
Doskonale widać, że analiza matematyczna operatora równoważności A2B2: ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora równoważności A1B1: p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Uwaga:
Przykład równoważności A<=>S i operatora równoważności A|<=>S znajdziemy w punkcie 6.6 i 6.6.1
|
... i co, zatkało kakao?
Ostatnio zmieniony przez rafal3006 dnia Pią 19:00, 14 Mar 2025, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Pią 19:07, 14 Mar 2025 Temat postu: |
|
|
rafal3006 napisał: | ... i co, zatkało kakao?
Irbisol napisał: | To, czy jest przeczenie, czy nie, jest kwestią czysto umowną, schizofreniku.
Wcześniej to uzasadniłem i nie miałeś uwag.
Zresztą - wskaż to ~q tak z ciekawości. |
OT, TO!
Ciekawość = pierwszy krok do wyjście ze świata ciemności (KRZ) do świata jasności (algebra Kubusia)
Dowód iż przecznia "~" w tabeli prawdy operatorów logicznych (w tym operatora równoważności) są kluczowe i najważniejsze na przykłdzie operatora równoważności p|<=>q masz w zapisie ogólnym (formalnym) niżej. |
Tylko wtedy, gdy zdanie występuje w dwóch postaciach: z zaprzeczeniem i bez zaprzeczenia. Jeżeli występuje w jednej postaci, to nie ma znaczenia czy jest z zaprzeczeniem czy bez, bo można je zastąpić zaprzeczeniem tego wystąpienia.
Ponieważ jesteś mało domyślny i zapominasz kontekst to sprecyzuję, jakie ~q miałeś pokazać.
Napisałeś:
Twój zapis ma zero wspólnego z definicją równoważności p<=>q, twój zapis to taka definicja p<=>~q
O to ~q pytam.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 20:51, 14 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | rafal3006 napisał: | ... i co, zatkało kakao?
Irbisol napisał: | To, czy jest przeczenie, czy nie, jest kwestią czysto umowną, schizofreniku.
Wcześniej to uzasadniłem i nie miałeś uwag.
Zresztą - wskaż to ~q tak z ciekawości. |
OT, TO!
Ciekawość = pierwszy krok do wyjście ze świata ciemności (KRZ) do świata jasności (algebra Kubusia)
Dowód iż przeczenia "~" w tabeli prawdy operatorów logicznych (w tym operatora równoważności) są kluczowe i najważniejsze na przykładzie operatora równoważności p|<=>q masz w zapisie ogólnym (formalnym) niżej. |
Tylko wtedy, gdy zdanie występuje w dwóch postaciach: z zaprzeczeniem i bez zaprzeczenia. Jeżeli występuje w jednej postaci, to nie ma znaczenia czy jest z zaprzeczeniem czy bez, bo można je zastąpić zaprzeczeniem tego wystąpienia.
Ponieważ jesteś mało domyślny i zapominasz kontekst to sprecyzuję, jakie ~q miałeś pokazać.
Napisałeś:
Twój zapis ma zero wspólnego z definicją równoważności p<=>q, twój zapis to taka definicja p<=>~q
O to ~q pytam. |
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Definicja równoważności na którą obaj się zgadzamy:
Równoważność to jednocześnie zachodzący warunek konieczny ~> (B1) i wystarczający => (A1) między tymi samymi punktami i w tym samym kierunku
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> (B1) i wystarczającym => (A1) do tego by zaszło q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p
To jest definicja znana każdemu człowiekowi!
Korzystając z definicji warunku wystarczającego => i koniecznego ~> wyprowadzamy definicję równoważności p<=>q w spójnikach "i"(*) i "lub"(+)
Y = (A1:p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q + ~p*~q
Stąd mamy:
Y = p<=>q = p*q + ~p*~q
Ty Irbisolu twierdzisz że defincją równoważności jest rownież ta definicja:
Y = p<=>~q
Sprawdżmy rozwijając ostatni zapis definicją równowazności w spójnikach "i"(*) i "lub"(+)
Y = p<=>~q = p*(~q) + ~p*~(~q) = p*~q +~p*q
Sam widzisz, jaki potwornie śmiedzące gówna tworzysz bo ostatni zapis to definicja spójnika "albo"($) z języka mówionego:
Y = p$q = p<=>~q = p*~q + ~p*q
Dowód twojej niebotycznej głupoty pokażą ci panie z przedszkoli A1 i A2.
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
Podsumowując:
Wedle płaskoziemcy Irbisola zdania pań przedszkolanek z przedszkoli A1 i A2 są tożsame, bo równoważność <=> to równoważność <=>
Czy jesteś pewien płaskoziemco, że zachodzi tożsamość:
p<=>q = p<=>~q?
TAK/NIE
Ostatnio zmieniony przez rafal3006 dnia Pią 21:06, 14 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Pią 21:05, 14 Mar 2025 Temat postu: |
|
|
Nie twierdzę, że jest to definicja. Twierdzę, że jest to równoważność.
Gdzie to ~q ?
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 21:19, 14 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | Nie twierdzę, że jest to definicja. Twierdzę, że jest to równoważność.
Gdzie to ~q ? |
Masz braki na poziomie elementarza logiki matematycznej!
Dowód znajdziesz w algebrze Kubusia w postaci prawa Puchacza.
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680051
Algebra Kubusia napisał: |
Spis treści
2.10 Podstawowe spójniki implikacyjne 1
2.10.1 Prawo Puchacza 3
2.10 Podstawowe spójniki implikacyjne
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik definiowany kolumną A1B1 w matematycznych związkach warunku wystarczającego => i koniecznego ~> dający odpowiedź na pytanie o p:
Co się stanie jeśli zajdzie p?
A1: p=>q =? - czy zajście p jest wystarczające => dla zajścia q? TAK=1/NIE=0
B1: p~>q =? - czy zajście p jest konieczne ~> dla zajścia q? TAK=1/NIE=0
A1B1: p?q = (~)(A1: p=>q)*(~)(B1: p~>q)
Gdzie:
? - symbol spójnika implikacyjnego
(~) - symbol negacji który może wystąpić, ale nie musi, w zależności od wartości logicznej A1 i B1
Z definicji spójnika implikacyjnego wynika, że możliwe są cztery podstawowe spójniki implikacyjne:
1.
Implikacja prosta p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
;
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Definicja implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)
Korzystając z definicji znaczków => i ~> mamy:
Y = (p|=>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) =~p*~p*q+q*~p*q = ~p*q+~p*q=~p*q
Kolejność wykonywania działań w algebrze Kubusia:
Negacja (~), nawiasy, "i"(*), "lub"(+)
Do zapamiętania:
Definicja implikacji prostej p|=>q w spójnikach "i"(*) i "lub"(+):
Y = (p|=>q) = ~p*q
##
2.
Implikacja odwrotna p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q)=1*1=1
;
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Definicja implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)
Korzystając z definicji znaczków => i ~> mamy:
Y = (p|~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) =(p*~q)*p + (p*~q)*~q = p*~q+p*~q = p*~q
Do zapamiętania:
Definicja implikacji odwrotnej p|~>q w spójnikach "i"(*) i "lub"(+):
Y = (p|~>q) = p*~q
##
3.
Równoważność p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
;
Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd mamy:
Y = p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p~q + q*p + q*~q = p*q+~p*~q
Do zapamiętania:
Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+):
Y = p<=>q = p*q + ~p*~q
##
4.
Chaos p|~~>q:
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego =>, ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
;
Definicja chaosu w spójnikach "lub"(+) i "i"(*):
Chaos p|~~>q to zdanie zawsze prawdziwe przez wszystkie możliwe przeczenia p i q
Y = p*q+~p*q + p*~q + ~p*~q = q*(p+~p)+~q*(p+~p) = q+~q =1
Do zapamiętania:
Definicja chaosu p|~~>q w spójnikach "lub"(+) i "i"(*):
Y = p*q+~p*q + p*~q + ~p*~q =1
Gdzie:
## - różne na mocy definicji
2.10.1 Prawo Puchacza
Prawo Puchacza:
Dowolne zdanie warunkowe „Jeśli p to q” może wchodzić w skład jednego i tylko jednego spójnika implikacyjnego.
Dowód prawa Puchacza będzie polegał na założeniu, iż zdanie warunkowe „Jeśli p to q” jest częścią spójnika implikacyjnego x i pokazaniu iż pozostałe spójniki będą dla tego przypadku fałszem.
Dowód prawa Puchacza:
I.
Założenie p|=>q
Załóżmy, że zdanie warunkowe „Jeśli p to q” jest częścią implikacji prostej p|=>q
Wtedy mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(1)*0=0*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*0=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(1)*~(0)=0*1=0
c.n.d.
II.
Założenie p|~>q
Załóżmy, że zdanie warunkowe „Jeśli p to q” jest częścią implikacji odwrotnej p|~>q
Wtedy mamy:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=0*~(1)=0*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 0*1=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(1)=1*0=0
c.n.d.
III.
Założenie p<=>q
Załóżmy, że zdanie warunkowe „Jeśli p to q” jest częścią równoważności p<=>q
Wtedy mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(1)=1*0=0
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(1)*1=0*1=0
4.
Chaos p|~~>q:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(1)*~(1)=0*0=0
c.n.d.
IV
Założenie p|~~>q
Załóżmy że zdanie warunkowe „Jeśli p to q” jest częścią chaosu p|~~>q
Wtedy mamy:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Badamy prawdziwość/fałszywość pozostałych, podstawowych spójników implikacyjnych:
1.
Implikacja prosta p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=0*~(0)=0*1=0
2.
Implikacja odwrotna p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*0=1*0=0
3.
Równoważność p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 0*0=0
ok
c.n.d.
Rozpatrzyliśmy wszystkie możliwe przypadki I, II, III i IV pozytywnie, co kończy dowód prawa Puchacza.
|
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Pią 21:24, 14 Mar 2025 Temat postu: |
|
|
Gdzie to ~q ?
Znowu ci uciekło?
To mi się podoba:
Cytat: |
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
Podsumowując:
Wedle płaskoziemcy Irbisola zdania pań przedszkolanek z przedszkoli A1 i A2 są tożsame, bo równoważność <=> to równoważność <=>
Czy jesteś pewien płaskoziemco, że zachodzi tożsamość:
p<=>q = p<=>~q? |
A kto tu pisze o tożsamości, schizofreniku? Jak pani powie, że pójdą do kina wtedy i tylko wtedy, gdy pójdą do zoo, to to już nie będzie równoważność, bo nie jest tożsama z "pójdziemy do kina wtedy i tylko wtedy, gdy pójdziemy do teatru"?
Ostatnio zmieniony przez Irbisol dnia Pią 22:31, 14 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 0:15, 15 Mar 2025 Temat postu: |
|
|
Zatkało kakao?
Irbisol napisał: | Gdzie to ~q ?
Znowu ci uciekło?
To mi się podoba:
Cytat: |
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
Podsumowując:
Wedle płaskoziemcy Irbisola zdania pań przedszkolanek z przedszkoli A1 i A2 są tożsame, bo równoważność <=> to równoważność <=>
Czy jesteś pewien płaskoziemco, że zachodzi tożsamość:
p<=>q = p<=>~q? |
A kto tu pisze o tożsamości, schizofreniku? Jak pani powie, że pójdą do kina wtedy i tylko wtedy, gdy pójdą do zoo, to to już nie będzie równoważność, bo nie jest tożsama z "pójdziemy do kina wtedy i tylko wtedy, gdy pójdziemy do teatru"?  |
To jest twoja matematyczna schizofrenia w pełnej krasie, bo zrobiłeś błąd podstawienia i tego nie widzisz.
Kiedy przechodzisz do klubu algebry Kubusia?
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Podstawmy:
p=K
q=T
Stąd mamy zdanie A1 w zapisie formalnym:
Y = p<=>q = p*q + ~p*~q
##
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
W zdaniu A2 musimy przyjąć identyczny punkt odniesienia jak w zdaniu A1, inaczej błąd podstawienia!
Stąd zdanie A2 w zapisie formalnym to:
Y = p$q = p<=>~q = p*~q + ~p*q
Gdzie:
## - zdania różne na mocy definicji
p i q w zdaniach A1 i A2 muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Definicja znaczka różne na mocy definicji ##:
Zdanie A1 ma zerowy związek ze zdaniem A2 czyli między zdaniem A1 a zdaniem A2 nie zachodzą absolutnie żadne relacje matematyczne, z wyjątkiem właśnie znaczka różne na mocy definicji ##
Podsumowując:
Mam nadzieję że widzisz iż twoje podstawienia za ~q ogrodu ZOO, ma zerowy związek zarówno ze zdaniem A1 jak i ze zdaniem A2.
Swoim ZOO zrobiłeś tu trywialny błąd podstawienia na poziomie przedszkola logiki matematycznej.
Zatkało kakao?
Ostatnio zmieniony przez rafal3006 dnia Sob 7:01, 15 Mar 2025, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 8:41, 15 Mar 2025 Temat postu: |
|
|
Świadomie zrobiłem ten błąd podstawienia, tak samo jak ty zrobiłeś go wcześniej - żeby ci pokazać, jaki jesteś tępy. A ty mi jeszcze tłumaczysz, na czym polega mój błąd.
Jak bym nie zobaczył, to bym nie uwierzył ...
Gdzie to mityczne ~q, schizofreniku?
Ostatnio zmieniony przez Irbisol dnia Sob 8:42, 15 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 10:16, 15 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | Świadomie zrobiłem ten błąd podstawienia, tak samo jak ty zrobiłeś go wcześniej - żeby ci pokazać, jaki jesteś tępy. A ty mi jeszcze tłumaczysz, na czym polega mój błąd.
Jak bym nie zobaczył, to bym nie uwierzył ...
Gdzie to mityczne ~q, schizofreniku? |
Wszelkie przeczenia w logice matematycznej są kluczowe i najważniejsze!
Dowód masz w tym poście:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-11175.html#835709
Wytłumaczę ci to jasno i klarownie (na 100% zrozumiesz) pod warunkiem że nie będziesz panikował swoim sloganem:
"niezamówionego gówna nie czytam"
Więc jak:
Przeczytasz?
TAK/NIE
Ostatnio zmieniony przez rafal3006 dnia Sob 10:18, 15 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 10:56, 15 Mar 2025 Temat postu: |
|
|
Nie.
Wracaj do tematu schizofreniku.
Gdzie to ~q ?
Jak trzeba być tępym, by uznać że jedyna słuszna równoważność to ta z kinem i teatrem?
Co do "dowodu w tym poście", to w następnym poście masz odpowiedź. Więc się nie zapętlaj.
Ostatnio zmieniony przez Irbisol dnia Sob 10:56, 15 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 11:42, 15 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | Nie.
Wracaj do tematu schizofreniku.
Gdzie to ~q ?
Jak trzeba być tępym, by uznać że jedyna słuszna równoważność to ta z kinem i teatrem?
|
Płaskoziemcze, udowodnij gdzie tak napisałem.
Udowodnisz - kasuję algebrę Kubusia.
Ostatnio zmieniony przez rafal3006 dnia Sob 11:43, 15 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 13:20, 15 Mar 2025 Temat postu: |
|
|
Tam, gdzie się przywaliłeś do obietnicy A2.
I nie obiecuj, kłamco, że wykasujesz swoje gówno.
Gdzie to ~q ?
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 13:40, 15 Mar 2025 Temat postu: |
|
|
Irbisol napisał: | Tam, gdzie się przywaliłeś do obietnicy A2.
I nie obiecuj, kłamco, że wykasujesz swoje gówno.
Gdzie to ~q ?
|
O co chodzi w twoim ~q chętnie ci wytłumaczę w sposób, który na 100% zrozumiesz.
Przeczytasz?
TAK/NIE
Podpowiedź:
Nie znasz definicji spójnika "albo"($) stąd ci się pieprzy, że spójnik "albo"($) ma cokolwiek wspólnego ze spójnikiem równoważności p<=>q
Matematycznie zachodzi:
A1: Y = p<=>q = p*q+~p*~q
##
A2: Y = p$q = p*~q + ~p*q
Gdzie:
## - zdania różne na mocy definicji
Definicja znaczka różne na mocy definicji ##:
Zdanie A1 ma zerowy związek ze zdaniem A2 czyli między zdaniem A1 a zdaniem A2 nie zachodzą absolutnie żadne relacje matematyczne, z wyjątkiem właśnie znaczka różne na mocy definicji ##
Irbisolu.
Twój brak zrozumienia o co chodzi w obietnicach A1 i A2 w moim poście wyżej jest twardym dowodem, że ni w ząb nie kumasz tego twojego ~q.
Cytuję mój post którego nie rozumiesz - czytaj dopóty, dopóki nie zrozumiesz.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-11175.html#835733
rafal3006 napisał: | Zatkało kakao?
Irbisol napisał: | Gdzie to ~q ?
Znowu ci uciekło?
To mi się podoba:
Cytat: |
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
Podsumowując:
Wedle płaskoziemcy Irbisola zdania pań przedszkolanek z przedszkoli A1 i A2 są tożsame, bo równoważność <=> to równoważność <=>
Czy jesteś pewien płaskoziemco, że zachodzi tożsamość:
p<=>q = p<=>~q? |
A kto tu pisze o tożsamości, schizofreniku? Jak pani powie, że pójdą do kina wtedy i tylko wtedy, gdy pójdą do zoo, to to już nie będzie równoważność, bo nie jest tożsama z "pójdziemy do kina wtedy i tylko wtedy, gdy pójdziemy do teatru"?  |
To jest twoja matematyczna schizofrenia w pełnej krasie, bo zrobiłeś błąd podstawienia i tego nie widzisz.
Kiedy przechodzisz do klubu algebry Kubusia?
Pani w przedszkolu A1:
Drogie dzieci:
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
Y = K<=>T = K*T + ~K*~T
Podstawmy:
p=K
q=T
Stąd mamy zdanie A1 w zapisie formalnym:
Y = p<=>q = p*q + ~p*~q
##
Pani w przedszkolu A2:
Drogie dzieci:
Jutro pójdziemy do kina "albo"($) do teatru
Y = K$T = K<=>~T = K*~T + ~K*T
W zdaniu A2 musimy przyjąć identyczny punkt odniesienia jak w zdaniu A1, inaczej błąd podstawienia!
Stąd zdanie A2 w zapisie formalnym to:
Y = p$q = p<=>~q = p*~q + ~p*q
Gdzie:
## - zdania różne na mocy definicji
p i q w zdaniach A1 i A2 muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Definicja znaczka różne na mocy definicji ##:
Zdanie A1 ma zerowy związek ze zdaniem A2 czyli między zdaniem A1 a zdaniem A2 nie zachodzą absolutnie żadne relacje matematyczne, z wyjątkiem właśnie znaczka różne na mocy definicji ##
Podsumowując:
Mam nadzieję że widzisz iż twoje podstawienia za ~q ogrodu ZOO, ma zerowy związek zarówno ze zdaniem A1 jak i ze zdaniem A2.
Swoim ZOO zrobiłeś tu trywialny błąd podstawienia na poziomie przedszkola logiki matematycznej.
Zatkało kakao? |
Ostatnio zmieniony przez rafal3006 dnia Sob 13:47, 15 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 13:55, 15 Mar 2025 Temat postu: |
|
|
Wskaż, gdzie jest ~q.
Ty naprawdę nie widzisz, jak się ośmieszasz? Chcesz mi tu pierdzielić swoje wykłady - bo każdy wie, że taki jest jedynie twój cel - a nie potrafisz nawet WSKAZAĆ, które ze zdań jest ~q?
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 14:51, 15 Mar 2025 Temat postu: |
|
|
Tragiczne braki Irbisola w rozumieniu fundamentów logiki matematycznej!
Irbisol napisał: | Wskaż, gdzie jest ~q.
Ty naprawdę nie widzisz, jak się ośmieszasz? Chcesz mi tu pierdzielić swoje wykłady - bo każdy wie, że taki jest jedynie twój cel - a nie potrafisz nawet WSKAZAĆ, które ze zdań jest ~q? |
Irbisolu, masz tragiczne braki w rozumieniu fundamentów logiki matematycznej na poziomie 9-cio miesięcznego niemowlaka.
Dowód masz w punkcie 1.5.2.
Zrozumiesz logikę matematyczną wtedy i tylko wtedy, gdy twój mózg dobije do poziomu 9-cio miesięcznego niemowlaka.
Poniższy cytat to początek algebry Kubusia, bez zrozumienia którego żaden Ziemianin nie ma szans na zrozumienie logiki matematycznej!
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680043
Algebra Kubusia napisał: | Algebra Kubusia - matematyka języka potocznego
1.0 Nowa algebra Boole'a
Spis treści
1.0 Nowa algebra Boole’a 2
1.1 Definicje elementarne algebry Boole'a 3
1.1.1 Definicja negacji 3
1.1.2 Negator dwukierunkowy w bramkach logicznych 4
1.2 Fundamenty algebry Boole'a 5
1.2.1 Definicja funkcji logicznej algebry Boole'a 6
1.2.2 Prawo negacji funkcji logicznej Y 7
1.2.3 Ogólna definicja logiki matematycznej 7
1.3 Definicja funkcji logicznej jednoargumentowej Y=x 8
1.3.1 Definicja operatora logicznego jednoargumentowego Y|=x 8
1.3.2 Tabela wszystkich możliwych operatorów jednoargumentowych 9
1.4 Prawa Prosiaczka 10
1.4.1 Wstęp teoretyczny do wyprowadzenia praw Prosiaczka 10
1.4.2 Wyprowadzenie I prawa Prosiaczka 12
1.4.3 Wyprowadzenie II prawa Prosiaczka 13
1.4.4 Prawa Prosiaczka w bramkach logicznych 14
1.4.5 Przykład działania praw Prosiaczka na gruncie fizyki 15
1.4.6 Dowód praw Prosiaczka na poziomie 3-latka 16
1.4.7 Definicja standardu dodatniego w języku potocznym człowieka 17
1.5 Logika matematyczna stałych binarnych 17
1.5.1 Stałe binarne w wieku niemowlęcym 17
1.5.2 Stałe binarne w wieku 9 miesięcy 18
1.5.3 Pułapki w operatorach jednoargumentowych 19
1.6 Zasady kodowania zdań w operatorach jednoargumentowych 20
1.6.1 Zasady kodowania zdań twierdzących w świecie żywym 20
1.6.2 Funkcja logiczna Y zmiennej binarnej p 21
1.6.3 Funkcja logiczna Y stałej binarnej p 22
1.7 Prawo Puchacza dla zdań twierdzących jednoargumentowych 22
1.7.1 Jak działa prawo Puchacza? 22
1.7.2 Miękkie jedynki i miękkie zera w logice matematycznej 23
1.0 Nowa algebra Boole’a
Algebra Kubusia to matematyczny opis języka potocznego (w tym matematyki i fizyki).
Algebra Kubusia zawiera w sobie nową algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) oraz „lub”(+) z języka potocznego człowieka.
Innymi słowy:
Aktualna algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q” definiowanych warunkami wystarczającymi => i koniecznymi ~>.
Definicja nowej algebry Boole’a na poziomie znaczków:
Nowa algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
1 = prawda
0 = fałsz
„nie”(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Spójniki logiczne zgodne z językiem potocznym:
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym
Dlaczego nowa algebra Boole’a?
1.
W algebrze Kubusia zachodzi tożsamość znaczków:
Spójnik „i”(*) z języka potocznego = bramka AND (*) w technice = koniunkcja (*) w matematyce
Spójnik „lub”(+) z języka potocznego = bramka OR(+) w technice = alternatywa (+) w matematyce
Dowód tego faktu na poziomie 5-cio latka znajdziemy w punkcie 1.11 (sterowanie windą).
2.
Stara algebra Boole’a nie zna kluczowych dla logiki matematycznej pojęć: logika dodatnia (bo p) i logika ujemna (bo ~p). Definicję znajdziemy w pkt. 1.1.1
3.
Stara algebra Boole'a jest wewnętrznie sprzeczna na poziomie funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y), co udowodnimy za chwilkę (pkt. 1.8.4, 1.9.1 – poziom 5-cio latka)
1.1 Definicje elementarne algebry Boole'a
1 = prawda
0 = fałsz
Gdzie:
1##0
Prawda (1) jest różna na mocy definicji ## od fałszu (0)
Matematyczny związek wartości logicznych 1 i 0:
1 = ~0
0 = ~1
(~) - negacja
Innymi słowy:
Prawda (1) to zaprzeczenie (~) fałszu (0)
Fałsz (0) to zaprzeczenie (~) prawdy (1)
Definicja stałej binarnej:
Stała binarna to symbol mający w osi czasu stałą wartość logiczną (0 albo 1)
Pani w przedszkolu:
Pójdziemy do kina (K) lub nie pójdziemy do kina (~K)
Y = K+~K =1 - zdanie zawsze prawdziwe
Pójdziemy do kina (K) i nie pójdziemy do kina (~K)
Y = K*~K =0 - zdanie zawsze fałszywe
Gdzie:
Y - stała binarna
Definicja zmiennej binarnej:
Zmienna binarna to symbol, mogący w osi czasu przyjmować wyłącznie dwie wartości logiczne 0 albo 1.
Zachodzi tożsamość pojęć:
zmienna binarna = zmienna dwuwartościowa
1.1.1 Definicja negacji
Zero-jedynkowa tabela prawdy:
Zero-jedynkowa tabela prawdy to zapis wszystkich możliwych wartościowań zmiennych binarnych w postaci tabeli zero-jedynkowej.
W szczególnym przypadku symbol w nagłówku kolumny może być stałą binarną gdy w kolumnie są same jedynki albo same zera.
Kod: |
DN
Definicja negacji:
p # ~p
A: 1 # 0
B: 0 # 1
1 2
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
|
Definicja znaczka w logice matematycznej:
Znaczek w logice matematycznej to symbol zdefiniowany odpowiednią tabelą zero-jedynkową
Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
p#~p
Dowodem jest tu definicja negacji DN.
Definicja zmiennej binarnej w logice dodatniej (bo p):
Zmienna binarna p wyrażona jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej mamy do czynienia ze zmienną binarną w logice ujemnej (bo ~p)
Zauważmy, że w definicji negacji DN symbole p i ~p są zmiennymi binarnymi.
Dowód:
W osi czasu (kolumna A1B1) może zajść przypadek, że zmienna binarna p przyjmie wartość logiczną 1 (A1) albo wartość logiczną 0 (B1).
W osi czasu (kolumna B2A2) może zajść przypadek, że zmienna binarna ~p przyjmie wartość logiczną 1 (B2) albo wartość logiczną 0 (A2)
Stąd mamy:
Definicja osi czasu w logice matematycznej
W dowolnej tabeli zero-jedynkowej oś czasu to zero-jedynkowa zawartość kolumny opisanej symbolem nad tą kolumną.
W logice matematycznej odpowiednikiem układu Kartezjańskiego są wykresy czasowe.
Dowód na przykładzie (strona 5):
[link widoczny dla zalogowanych]
1.1.2 Negator dwukierunkowy w bramkach logicznych
W technice cyfrowej znaczek różne # o definicji jak wyżej jest odpowiednikiem dwukierunkowego negatora „O”.
Zachodzi tożsamość znaczków: # = O
Kod: |
Realizacja dwukierunkowego negatora „O” w bramkach logicznych
----- ~p=~(p)
p --x-------->| ~ |o-x------> ~p
| ----- |
| |
| p=~(~p) ----- |
-<-------o| ~ |<-x------- ~p
-----
Gdzie:
„O” - symbol dwukierunkowego negatora o budowie jak wyżej
"o"(~) - symbole negacji w technice „o” i w języku potocznym „~”
--->| - wejście bramki logicznej negatora (~)
|o--> - wyjście bramki logicznej negatora (~)
W świecie rzeczywistym musi tu być negator z otwartym kolektorem (OC)
na przykład typu SN7406. Wyjście OC musi być podparte rezystorem do Vcc.
|
W świecie rzeczywistym podajemy sygnały cyfrowe {0,1} na wejściu negatora p albo ~p obserwując co jest na jego wyjściu. Wszystko musi być zgodne z definicją DN.
Matematyczne związki między p i ~p:
a)
Dowolna strona znaczka # jest negacją drugiej strony
p#~p
b)
Prawo podwójnego przeczenia:
p=~(~p) - logika dodatnia (bo p) to zanegowana logika ujemna (bo ~p)
c)
Prawo zaprzeczenia logiki dodatniej (bo p):
~p=~(p) - logika ujemna (bo ~p) to zanegowana logika dodatnia (bo p)
Dowód w rachunku zero-jedynkowym:
Kod: |
Matematyczne związki w definicji negacji:
p ~p ~(~p) ~(p)
A: 1 0 1 0
B: 0 1 0 1
1 2 3 4
|
Tożsamość kolumn 1=3 jest dowodem formalnym prawa podwójnego przeczenia:
p=~(~p)
Tożsamość kolumn 2=4 jest dowodem formalnym prawa negacji logiki dodatniej (bo p):
~p=~(p)
Uwaga:
Budowa dwukierunkowego transmitera w bramkach logicznych będzie identyczna jak wyżej lecz z układem SN7407 w miejsce układu SN7406.
1.2 Fundamenty algebry Boole'a
Kluczowe znaczki algebry Boole’a to definicje spójników „i”(*) i „lub”(+) z języka potocznego człowieka.
Kod: |
Definicja dwuargumentowego spójnika „i”(*):
p* q Y=p*q
A: 1* 1 1
B: 1* 0 0
C: 0* 1 0
D: 0* 0 0
Y=1 <=> p=1 i q=1
inaczej:
Y=0 |
Kod: |
Definicja dwuargumentowego spójnika „lub”(+):
p+ q Y=p+q
A: 1+ 1 1
B: 1+ 0 1
C: 0+ 1 1
D: 0+ 0 0
Y=1 <=> p=1 lub q=1
inaczej:
Y=0
|
Gdzie:
<=> - wtedy i tylko wtedy
1.2.1 Definicja funkcji logicznej algebry Boole'a
Definicja wyrażenia algebry Boole'a:
Wyrażenie algebry Boole'a f(x) to zmienne binarne połączone spójnikami "i"(*) i "lub"(+)
Definicja funkcji logicznej algebry Boole'a:
Funkcja logiczna Y algebry Boole'a to zmienna binarna odzwierciedlająca binarne zmiany wyrażenia algebry Boole'a f(x) w osi czasu.
W technice funkcja algebry Boole'a to zwyczajowo duża litera Y.
Przykład:
f(x) - zapis ogólny dowolnie skomplikowanego i nieznanego wyrażenia algebry Boole’a
f(x)=p*q+~p*~q - definicja konkretnego wyrażenia algebry Boole’a
Stąd na mocy definicji funkcji logicznej mamy:
Y = f(x) = p*q+~p*~q
Zapis tożsamy:
Y = p*q+~p*~q
W szczególnym przypadku funkcja logiczna Y może być stałą binarną, gdy w kolumnie opisującej symbol Y są same jedynki albo same zera.
Ogólna definicja dziedziny D:
Pojęcie ~x jest uzupełnieniem dla pojęcia x do wspólnej dziedziny D oraz pojęcia x i ~x są rozłączne
x+~x =D =1 - zdanie zawsze prawdziwe (stała binarna)
x*~x =[] =0 - zdanie zawsze fałszywe (stała binarna)
Definicja dziedziny w zbiorach:
Zbiór ~p jest uzupełnieniem zbioru p do wspólnej dziedziny D oraz zbiory p i ~p są rozłączne.
Czyli:
Y = p+~p =D =1 - zdanie zawsze prawdziwe (stała binarna)
Y = p*~p =[] =0 - zdanie zawsze fałszywe (stała binarna)
W algebrze Kubusia zdanie zawsze prawdziwe (Y=1) oraz zdanie zawsze fałszywe (Y=0) to bezużyteczne śmieci zarówno w matematyce, jak i w języku potocznym
Dowód na przykładzie.
Rozważmy dwa zbiory:
TP - zbiór trójkątów prostokątnych (TP)
~TP - zbiór trójkątów nieprostokątnych (~TP)
Wspólna dziedzina:
ZWT - zbiór wszystkich trójkątów
Definicja dziedziny w zbiorach:
Zbiór ~TP jest uzupełnieniem zbioru TP do wspólnej dziedziny ZWT oraz zbiory TP i ~TP są rozłączne w dziedzinie ZWT.
Czyli:
Twierdzenie T1:
Dowolny trójkąt jest prostokątny (TP) lub nie jest prostokątny (~TP)
Y = TP+~TP = ZWT =1 - zdanie zawsze prawdziwe (stała binarna)
Twierdzenie T2:
Dowolny trójkąt jest prostokątny (TP) i nie jest prostokątny (~TP)
Y = TP*~TP =[] =0 - zdanie zawsze fałszywe (stała binarna)
Wartość matematyczna twierdzeń T1 i T2 jest zerowa (śmieci).
Analogia do programowania:
Nie da się napisać najprostszego nawet programu dysponując wyłącznie stałymi binarnymi, o z góry wiadomej wartości logicznej.
Definicja bramki logicznej:
Bramka logiczna to układ cyfrowy o n wejściach binarnych {p,q,r..} i tylko jednym wyjściu binarnym Y
Matematycznie zachodzi tożsamość:
funkcja logiczna Y = wyjście bramki logicznej Y
Zwyczajowe zmienne binarne w technice to:
p, q, r … - wejścia bramki logicznej
Y - wyjście bramki logicznej
Przykład:
Y = p*q+~p*~q
1.2.2 Prawo negacji funkcji logicznej Y
Definicja funkcji logicznej w logice dodatniej (bo Y):
Funkcja logiczna Y zapisana jest w logice dodatniej (bo Y) wtedy i tylko wtedy gdy nie jest zanegowana.
W przeciwnym przypadku mamy do czynienia z funkcją logiczną w logice ujemnej (bo ~Y)
Prawo negacji funkcji logicznej Y:
Dowolną funkcję logiczną w logice dodatniej (bo Y) wolno nam dwustronnie zanegować przechodząc do funkcji logicznej w logice ujemnej (bo ~Y) i odwrotnie.
1.2.3 Ogólna definicja logiki matematycznej
Ogólna definicja logiki matematycznej:
Logika matematyczna to matematyczny opis nieznanego tzn. nieznanej przyszłości albo nieznanej przeszłości.
Nie wszystko w czasie przeszłym jest nam wiadome - logika matematyczna służy tu do ustalenia co się w przeszłości zdarzyło
Przykład:
Poszukiwanie mordercy
Po długich poszukiwaniach mordercy, Kowalskiemu udowodniono zabójstwo x-a, i się do tego przyznał.
Po co komu potrzebna jest tu dalsza logika matematyczna prowadząca do wykrycia znanego już wszystkim zabójcy x-a?
Stąd mamy:
Prawo Nietoperza:
Jeśli znamy zaistniałe w przeszłości fakty to żadna logika matematyczna ich nie zmieni, jest psu na budę potrzebna.
Przykład:
Hitler - wiemy kim był i co zrobił, to jest fakt, którego żadna logika matematyczna nie zmieni
Nie możemy cofnąć czasu i spowodować by Hitler zginął w zamachu na jego życie przed wybuchem II Wojny Światowej.
1.3 Definicja funkcji logicznej jednoargumentowej Y=x
Prawo Lwa:
Warunkiem koniecznym zrozumienia logiki matematycznej jest jej znajomość na poziomie funkcji logicznych jednoargumentowych.
W najprostszym przypadku mamy do czynienia z funkcją logiczną jednej zmiennej binarnej x
Y=x
Gdzie:
x = {p, ~p, 1, 0}
Definicja funkcji logicznej jednoargumentowej Y=x
Funkcja logiczna jednoargumentowa Y=x to odpowiedź na pytanie o Y.
Kiedy zajdzie Y?
A1.
Y=x
Zajdzie Y wtedy i tylko wtedy gdy zajdzie x
Gdzie:
x = {p, ~p, 1, 0}
Wszystkie możliwe funkcje jednoargumentowe to:
Y=p - transmisja, na wyjściu Y mamy zawsze niezanegowany sygnał p
Y=~p - negacja, na wyjściu Y mamy zawsze zanegowany sygnał p (~p)
Y=1 - stała binarna, na wyjściu Y mamy zawsze 1
Y=0 - stała binarna, na wyjściu Y mamy zawsze 0
1.3.1 Definicja operatora logicznego jednoargumentowego Y|=x
Operatory jednoargumentowe to kwintesencja działania operatorów logicznych definiowanych spójnikami „i”(*) i „lub”(+) z języka potocznego 5-cio latka.
Zrozumienie istoty działania operatorów jednoargumentowych jest warunkiem koniecznym dla zrozumienia istoty działania operatorów logicznych n-argumentowych definiowanych spójnikami „i”(*) i „lub”(+)
Operatory jednoargumentowy to zaledwie cztery operatory różne na mocy definicji ## (pkt.1.3.2)
Przy dwóch argumentach mamy już 16 różnych na mocy definicji ## operatorów (pkt. 1.18)
Definicja operatora logicznego jednoargumentowego Y|=x:
Operator logiczny jednoargumentowy Y|=x to układ równań logicznych Y=x i ~Y=~x dający odpowiedź na pytanie kiedy zajdzie Y, a kiedy zajdzie ~Y
Kiedy zajdzie Y?
A1.
Y=x
Zajdzie Y wtedy i tylko wtedy gdy zajdzie x
#
.. a kiedy zajdzie ~Y?
Negujemy dwustronnie jednoargumentową funkcję logiczną A1.
B1.
~Y = ~x
Zajdzie ~Y wtedy i tylko wtedy gdy zajdzie ~x
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
1.3.2 Tabela wszystkich możliwych operatorów jednoargumentowych
Zapiszmy wszystkie możliwe operatory jednoargumentowe w tabeli prawdy
Kod: |
TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1: Y= p # B1: ~Y=~p
## ##
Operator negacji Y=|~p
A2: Y=~p # B2: ~Y= p
## ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne (Y,~Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej
Doskonale widać, że w tabeli TJ definicje obu znaczków # i ## są perfekcyjnie spełnione.
Linie A3B3 i A4B4 to bezcenne zero-jedynkowe definicje praw Prosiaczka.
Znaczenie alternatywne:
Linie A3B3 i A4B4 to stałe binarne, w logice matematycznej totalnie bezużyteczne czego dowód mieliśmy w punkcie 1.2.1
1.4 Prawa Prosiaczka
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo Y) jest tożsama z fałszem (=0) w logice ujemnej (bo ~Y)
(Y=1) = (~Y=0)
##
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo Y) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~Y)
(Y=0) = (~Y=1)
Gdzie:
## - różne na mocy definicji
Prawa Prosiaczka wiążą zmienną binarną w logice dodatniej (bo Y) ze zmienną binarną w logice ujemnej (bo ~Y). Prawa Prosiaczka możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej, jak również w stosunku do dowolnej stałej binarnej.
Zapiszmy funkcje logiczne A3 i A4 bo tylko one w prawach Prosiaczka nas interesują
Kod: |
TJ34
A3: Y=1 # B3: ~Y=0
## ##
A4: Y=0 # B4: ~Y=1
Gdzie:
# - różne w znaczeniu iż jedna strona # jest negację drugiej strony
## - różne na mocy definicji
|
Definicja znaczka różne #
Dowolna strona znaczka różne # jest negacją drugiej strony
Definicja znaczka różne na mocy definicji ##
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.
Doskonale widać, że tabela TJ34 perfekcyjnie spełnia zarówno definicję znaczka różne # jak i definicję znaczka różne na mocy definicji ##
W wierszach A3 i A4 doskonale widać prawa Prosiaczka.
1.4.1 Wstęp teoretyczny do wyprowadzenia praw Prosiaczka
W tym momencie musimy trochę wyprzedzić czas i skorzystać z definicji równoważności p<=>q oraz z prawa Irbisa które poznamy niebawem w punktach 6.0 (teoria zdarzeń) oraz 16.0 (teoria zbiorów)
I.
Teoria zbiorów
Definicja równoważności p<=>q:
Równoważność p<=>q to jednoczesna prawdziwość twierdzenia prostego p=>q i twierdzenia odwrotnego q=>p
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Definicję równoważności p<=>q w zbiorach zna każdy uczeń 7 klasy Szkoły Podstawowej.
Dowód:
Równoważność Pitagorasa:
Trójkąt jest prostokątny wtedy i tylko wtedy <=> gdy zachodzi w nim suma kwadratów
A1B3: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP)=1*1=1
A1.
Twierdzenie proste Pitagorasa:
Jeśli trójkąt jest prostokątny to zachodzi w nim suma kwadratów
A1: TP=>SK =1 - udowodnione wieki temu
A1: p=>q =1 – zapis formalny (ogólny) twierdzenie prostego
B3.
Twierdzenie odwrotne Pitagorasa:
Jeśli w trójkącie zachodzi suma kwadratów to ten trójkąt jest prostokątny
B3: SK=>TP =1 - udowodnione wieki temu
B3: q=>p =1 – zapis formalny (ogólny) twierdzenia odwrotnego
Prawo Irbisa w teorii zbiorów:
Każda równoważność zbiorów p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Nasz przykład:
A1B3: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) <=> A1B3: TP=SK
Co oznacza tożsamość zbiorów:
A1B3: TP=SK
Każdy trójkąt prostokątny TP ma swój jeden, unikalny odpowiednik w zbiorze trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)
Historyczny wniosek roznoszący w puch ziemską teorię mnogości:
Nieskończone zbiory TP i SK posiadają identyczną liczbę elementów, czyli są zbiorami równolicznymi TP~SK
Gdzie:
„~” – symbol równoliczności w ziemskiej teorii mnogości
Szczegóły poznamy w punkcie 32.0
II.
Teoria zdarzeń
Definicja równoważności p<=>q:
Równoważność p<=>q to jednoczesna prawdziwość twierdzenia prostego p=>q i twierdzenia odwrotnego q=>p
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Rozważmy przycisk A sterujący świeceniem lampki nocnej S.
Zachodząca tu równoważność p<=>q brzmi:
Przycisk A jest wciśnięty wtedy i tylko wtedy gdy lampka S świeci się
A1B3: P<=>S = (A1: A=>S)*(B3: S=>A) =1*1 =1
A1.
Twierdzenie proste:
Jeśli przycisk A jest wciśnięty to lamka S świeci się
A1: A=>S =1 – oczywista oczywistość
A1: p=>q =1 – zapis formalny twierdzenia prostego
B3.
Twierdzenie odwrotne:
Jeśli lampka S świeci się to przycisk A jest wciśnięty
B3: S=>A =1 – oczywista oczywistość
B3: q=>p =1 – zapis formalny twierdzenia odwrotnego
Prawo Irbisa w teorii zdarzeń:
Każda równoważność zdarzeń p<=>q definiuje tożsamość zdarzeń p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Nasz przykład:
A1B3: P<=>S = (A1: P=>S)*(B3: S=>A) <=> A1B3: P=S
Co oznacza tożsamość zdarzeń:
A1B3: P=S
W naszej równoważności P<=>S zdarzenie „przycisk P jest wciśnięty” jest tożsame ze zdarzeniem „żarówka S świeci się” (i odwrotnie)
Innymi słowy:
W naszej równoważności P<=>S pojęcie „przycisk P jest wciśnięty” jest tożsame z „pojęciem żarówka S świeci się” (i odwrotnie)
1.4.2 Wyprowadzenie I prawa Prosiaczka
Zapiszmy funkcje logiczne A3 i A4 w tabeli prawdy
Kod: |
TJ34
A3: Y=1 # B3: ~Y=0
## ##
A4: Y=0 # B4: ~Y=1
Gdzie:
# - różne w znaczeniu iż jedna strona # jest negację drugiej strony
## - różne na mocy definicji
|
I Prawo Prosiaczka (linia A3B3):
A3: (Y=1) # B3: (~Y=0)
Zmienna binarna w logice dodatniej (bo Y) ma wartość logiczną 1 wtedy i tylko wtedy gdy zmienna binarna w logice ujemnej (bo ~Y) ma wartość logiczną 0 (i odwrotnie)
Stąd mamy zapis tożsamy I prawa Prosiaczka:
A3: (Y=1) <=> B3: (~Y=0)
Stąd:
I Prawo Prosiaczka:
A3: (Y=1) <=> B3: (~Y=0) = (A3: (Y=1)=>B3: (~Y=0))*(B3: (~Y=0)=>A3: (Y=1)) =1*1 =1
Twierdzenie proste A3: p=>q brzmi:
A3.
Jeśli A3: (Y=1) to na 100% => B3: (~Y=0)
cnd
Twierdzenie odwrotne B3: q=>p brzmi:
B3.
Jeśli B3: (~Y=0) to na 100% => A3: (Y=1)
cnd
Prawo Irbisa:
Każda równoważność pojęć p<=>q definiuje tożsamość pojęć p=q i odwrotnie
p<=>q [=] p=q
Na mocy prawa Irbisa mamy:
A3: (Y=1) <=> B3: (~Y=0) [=] A3: (Y=1) = B3: (~Y=0)
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony
Tożsame znaczki tożsamości logicznej które możemy używać zamiennie celem precyzyjnego zapisu prawa logicznego np. prawa Irbisa
<=>, „=”, [=]
<=> - wtedy i tylko wtedy
Stąd końcowa postać I prawa Prosiaczka przyjmuje brzmienie.
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo Y) jest tożsama z fałszem (=0) w logice ujemnej (bo ~Y)
(Y=1) = (~Y=0)
1.4.3 Wyprowadzenie II prawa Prosiaczka
Zapiszmy funkcje logiczne A3 i A4 w tabeli prawdy bo w prawach Prosiaczka tylko one nas interesują
Kod: |
TJ34
A3: Y=1 # B3: ~Y=0
## ##
A4: Y=0 # B4: ~Y=1
Gdzie:
# - różne w znaczeniu iż jedna strona # jest negację drugiej strony
## - różne na mocy definicji
|
II Prawo Prosiaczka (linia A4B4):
A4 (Y=0) # B4: (~Y=1)
Zmienna binarna w logice dodatniej (bo Y) ma wartość logiczną 0 wtedy i tylko wtedy gdy zmienna binarna w logice ujemnej (bo ~Y) ma wartość logiczną 1 (i odwrotnie)
Stąd mamy zapis tożsamy II prawa Prosiaczka:
A4: (Y=0) <=> B4: (~Y=1)
Definicja równoważności p<=>q:
Równoważność to jednoczesne zachodzenie twierdzenia prostego p=>q i twierdzenia odwrotnego q=>p
p<=>q = (p=>q)*(q=>p) =1*1 =1
Stąd:
II Prawo Prosiaczka:
A4: (Y=0) <=> B4: (~Y=1) = (A4: (Y=0)=>B4: (~Y=1))*(B4: (~Y=1)=>A4: (Y=0)) =1*1 =1
Twierdzenie proste A4: p=>q brzmi:
A4.
Jeśli A4: (Y=0) to na 100% => B4: (~Y=1)
cnd
Twierdzenie odwrotne B4: q=>p brzmi:
B4.
Jeśli B4: (~Y=1) to na 100% => A4: (Y=0)
cnd
Prawo Irbisa:
Każda równoważność pojęć p<=>q definiuje tożsamość pojęć p=q i odwrotnie
p<=>q [=] p=q
Na mocy prawa Irbisa mamy:
A4: (Y=0) <=> B4: (~Y=1) [=] A4: (Y=0) = B4: (~Y=1)
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony
Tożsame znaczki tożsamości logicznej które możemy używać zamiennie celem precyzyjnego zapisu prawa logicznego np. prawa Irbisa
<=>, „=”, [=]
<=> - wtedy i tylko wtedy
Stąd końcowa postać II prawa Prosiaczka przyjmuje brzmienie.
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo Y) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~Y)
(Y=0) = (~Y=1)
1.4.4 Prawa Prosiaczka w bramkach logicznych
Realizacja praw Prosiaczka w bramkach logicznych:
Kod: |
I prawo Prosiaczka:
(Y=1)<=>(~Y=0)
Y=1 ------ <=> ~Y=0
------------->| # |o----------------->
------
Po minięciu negatora # funkcję Y=1 musimy negować dwustronnie ~Y=0
## ##
II Prawo Prosiaczka:
(Y=0)<=>(~Y=1)
Y=0 ------ <=> ~Y=1
------------->| # |o----------------->
------
Po minięciu negatora # funkcję Y=0 musimy negować dwustronnie ~Y=1
Gdzie:
„o” - symbol negatora (#)
## - różne na mocy definicji
|
Stąd mamy:
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo Y) jest tożsama z fałszem (=0) w logice ujemnej (bo ~Y)
(Y=1) = (~Y=0)
##
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo Y) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~Y)
(Y=0) = (~Y=1)
Gdzie:
## - różne na mocy definicji
Prawa Prosiaczka możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej lub stałej binarnej.
1.4.5 Przykład działania praw Prosiaczka na gruncie fizyki
Przyjmijmy znaczenie symboli:
S - żarówka świeci
~S - żarówka nie świeci
Dowód I prawa Prosiaczka na przykładzie:
Linia A3B3 w tabeli TJ34:
S - żarówka świeci
Co w logice jedynek oznacza:
A3: S=1 - prawdą jest (=1) że żarówka świeci (S)
Zdanie tożsame na mocy prawa Prosiaczka:
(S=1)=(~S=0)
Czytamy:
B3: ~S=0 - fałszem jest (=0) że żarówka nie świeci (~S)
Prawdziwość I prawa Prosiaczka widać tu jak na dłoni:
(S=1) = (~S=0)
##
Dowód II prawa Prosiaczka na przykładzie:
Linia A4B4 w tabeli TJ34:
~S - żarówka nie świeci
Co w logice jedynek oznacza:
B4: ~S=1 - prawdą jest (=1) że żarówka nie świeci (~S)
Zdanie tożsame na mocy prawa Prosiaczka:
(~S=1)=(S=0)
Czytamy:
A4: S=0 - fałszem jest (=0) że żarówka świeci (S)
Prawdziwość II prawa Prosiaczka widać tu jak na dłoni:
(~S=1) = (S=0)
Gdzie:
## - różne na mocy definicji
Innymi słowy:
Pojęcie "żarówka świeci" (S=1) jest różne na mocy definicji ## od pojęcia "żarówka nie świeci" (~S=1)
1.4.6 Dowód praw Prosiaczka na poziomie 3-latka
Dla zrozumienia praw Prosiaczka nie są potrzebne żadne definicje bo to jest matematyczny poziom 3-latka.
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo p) jest tożsama z fałszem (=0) w logice ujemnej (bo ~p)
(p=1) = (~p=0)
##
II Prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)
Gdzie:
## - różne na mocy definicji
Prawa Prosiaczka doskonale znają w praktyce wszyscy ludzie na ziemi, od 3-latka poczynając.
Tata i synek Jaś (lat 3) na spacerze w ZOO
Jaś pokazując paluszkiem słonia mówi:
A.
Popatrz tata, to jest słoń!
S=1
Matematycznie:
Prawdą jest (=1) że to jest słoń (S)
Tata:
… a może to nie jest słoń?
Jaś:
B.
Fałszem jest (=0) że to nie jest słoń (~S)
~S=0
Zdania A i B są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
I prawo Prosiaczka:
A: (S=1) = B: (~S=0)
Jaś pokazuje paluszkiem kozę i mówi:
C.
Popatrz tata, to nie jest słoń
~S=1
Matematycznie:
Prawdą jest (=1), że to nie jest słoń
Tata:
… a może to jednak słoń?
Jaś:
D.
Fałszem jest (=0) że to jest słoń
S=0
Zdania C i D są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
II prawo Prosiaczka
C: (~S=1) = D: (S=0)
1.4.7 Definicja standardu dodatniego w języku potocznym człowieka
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni.
1.5 Logika matematyczna stałych binarnych
Logikę matematyczną stałych binarnych opisują linie A3B3 i A4B4 z pełnej tabeli operatorów jednoargumentowych
Kod: |
TJ34 Logika matematyczna stałych binarnych
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
1.5.1 Stałe binarne w wieku niemowlęcym
Logika matematyczna niemowlaków 0-2 lat to definiowanie stałych binarnych, które to definicje będą im niezbędne by w wieku 5 lat opanować biegle algebrę Kubusia.
Mama pokazuje 6-miesięcznemu synkowi na obrazku kurę i mówi:
A3.
To jest kura
K=1
Czytamy:
Prawdą jest (=1), że to jest kura (K)
Prawo Prosiaczka:
A3: (K=1) = B3: (~K=0)
B3:
~K=0
Czytamy:
Fałszem jest (=0), że to nie jest kura (~K)
Tożsamość zdań:
A3: (K=1) = B3: (~K=0)
rozumie każdy 5-cio latek
Wniosek:
Prawo Prosiaczka działa fenomenalnie
„To jest kura” z filmu CK Dezerterzy:
[link widoczny dla zalogowanych]
Czy mama może pokazywać niemowlakowi na obrazku kurę, twierdząc że to jest osioł?
Może, ale wyląduje w szpitalu psychiatrycznym co przydarzyło się von Nogayowi w filmie CK Dezerterzy.
1.5.2 Stałe binarne w wieku 9 miesięcy
Przysłowiowy Jaś zapewne pamięta, jak w wieku 9 miesięcy mama trzymając go na rączkach i pstrykając pstryczkiem elektryczkiem na ścianie pierwszy raz tłumaczyła mu co znaczą pojęcia:
„Żarówka świeci” vs „Żarówka nie świeci”?
Kod: |
TJ34
A3.
Żarówka świeci
A3: Y=1
Czytamy:
Prawdą jest (=1), że żarówka świeci (Y)
##
oraz
B4.
Żarówka nie świeci
B4: ~Y=1
Czytamy:
Prawdą jest (=1), że żarówka nie świeci (~Y)
Gdzie:
## - pojęcia różne na mocy definicji
|
Znaczenie stałej binarnej Y:
Y – żarówka świeci (Y=1)
~Y – żarówka nie świeci (~Y=1)
Jasiowi bardzo się to podobało, bo z zapałem dorwał się do pstryczka elektryczka powtarzając wiele razy:
O, żarówka świeci
A3: Y=1
##
Klikając pstryczkiem kolejny raz mówi:
O, żarówka nie świeci
B4:~Y=1
Gdzie:
## - pojęcia różne na mocy definicji
… i tak w koło Macieju Jaś utrwalił sobie w swoim małym móżdżku dwa, różne na mocy definicji pojęcia ## (stałe binarne):
A3: Y=1 (żarówka świeci Y) ## B4: ~Y=1 (żarówka nie świeci ~Y)
Gdzie:
## - różne na mocy definicji
1.5.3 Pułapki w operatorach jednoargumentowych
Zadanie:
Dane są trzy zdania „żarówka świeci”:
1.
Żarówka świeci
2.
Jaś wypowiada zdanie „żarówka świeci” gdzie my widzimy żarówkę o której mówi Jaś
3.
Jaś wypowiada zdanie „żarówka świeci” gdzie my nie widzimy żarówki o której mówi Jaś
Rozwiązanie:
W punktach 1 i 2 nie ma mowy by świat martwy (1) albo świat żywy (2) nas okłamał.
Stąd zdanie „żarówka świeci” przyporządkowujemy do punktu A3.
A3: Y=1
Czytamy:
Prawdą jest (=1), że żarówka świeci (Y)
Prawo Prosiaczka:
A3: (Y=1) = B3: (~Y=0)
Stąd zdanie tożsame do A3:
B3: (~Y=0)
Czytamy:
Fałszem jest (=0), że żarówka nie świeci (~S)
Genialność praw Prosiaczka każdy widzi.
W punkcie 3 Jaś ma wolną wolę i może nas okłamywać, zatem zdanie „żarówka świeci” musimy przypisać do punktu A1.
A1.
Jaś mówi „żarówka świeci” (gdzie nie widzimy żarówki o której mówi Jaś)
Y=S
Co w logice jedynek oznacza:
Y=1 <=> S=1
Czytamy:
Jaś mówi prawdę (Y=1) wtedy i tylko wtedy gdy żarówka świeci się (S=1)
… a kiedy Jaś nie mówi prawdy (~Y=1)
Negujemy funkcję A1 stronami:
B1.
~Y=~S
Co w logice jedynek oznacza:
~Y=1 <=> ~S=1
Czytamy:
Jaś nie mówi prawdy (~Y=1) wtedy i tylko wtedy gdy żarówka nie świeci się (~S=1)
1.6 Zasady kodowania zdań w operatorach jednoargumentowych
Kod: |
TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1: Y= p # B1: ~Y=~p
## ##
Operator negacji Y=|~p
A2: Y=~p # B2: ~Y= p
## ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Gdzie:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
Uwaga:
Linie A1B1 i A2B2 dotyczą świata żywego w którym kłamstwo (~Y) jest możliwe, zatem tu nie znamy z góry wartości logicznej zdań.
Linie A3B3 i A4B4 dotyczą świata martwego, który z definicji nie może kłamać, zatem tu znamy z góry wartość logiczną zdań 1 albo 0.
1.6.1 Zasady kodowania zdań twierdzących w świecie żywym
Wyłącznie świat żywy ma „wolną wolę” i może kłamać do woli.
Dotyczy wyłącznie linii A1B1 i A2B2 w tabeli TJ
Definicja funkcji logicznej w logice dodatniej (bo Y):
Funkcja logiczna zapisana jest w logice dodatniej (bo Y) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej zapisana jest w logice ujemnej (bo ~Y)
Przykłady: tabela TJ
Definicja logiki jedynek w języku potocznym:
Z logiką jedynek w języku potocznym mamy do czynienia wtedy i tylko wtedy gdy wszelkie zmienne występujące w zdaniu sprowadzone są do wartości logicznej 1.
Jedynki są w logice matematycznej domyślne i możemy je pominąć.
Innymi słowy:
Wszelkie przeczenia w kodowaniu matematycznym muszą być zapisane jawnie
Sprowadzenie wszystkich zmiennych do wartości logicznej 1 umożliwiają prawa Prosiaczka które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej lub stałej binarnej.
(p=1)=(~p=0)
(p=0) = (~p=1)
Przykład:
1.
Jutro nie pójdziemy do kina
Y=~K
Co w logice jedynek oznacza:
Y=1 <=> ~K=1 - to jest logika jedynek bo ~K=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
Prawo Prosiaczka:
(~K=1) = (K=0)
Stąd zapis tożsamy:
Y=1 <=> K=0 - to nie jest logika jedynek bo K=0
Prawo Żyrafy:
Kodowanie zdań twierdzących:
Wszelkie zdania twierdzące dotyczące świata żywego mającego „wolną wolę” kodujemy matematycznie wyłącznie w postaci funkcji logicznych
Y=f(x)
Gdzie:
Y - istota żywa dotrzyma słowa (Y=1)
~Y - istota żywa nie dotrzyma słowa (~Y=1)
Niedozwolone jest kodowanie zdań twierdzących w postaci samego wyrażenia f(x) bowiem prowadzi to do wewnętrznej sprzeczności logiki matematycznej w postaci prawa Grzechotnika (pkt. 1.9.1)
1.6.2 Funkcja logiczna Y zmiennej binarnej p
Definicja funkcji logicznej Y zmiennej binarnej p:
Funkcja logiczna Y zmiennej binarnej p jest poprawnie zbudowana wtedy i tylko wtedy gdy nie zawiera choćby jednego wartościowania w swoim zapisie.
To jest poprawnie zbudowana funkcja logiczna Y:
A1: Y=p
Co w logice jedynek oznacza:
A1’: Y=1 <=> p=1
.. a kiedy zajdzie ~Y?
#
Negujemy funkcję A1 dwustronnie:
B1: ~Y=~p
Co w logice jedynek oznacza:
B1’: ~Y=1 <=> ~p=1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zauważmy, że znaczek # dotyczy wyłącznie funkcji logicznych A1 i B1 oraz nie dotyczy wartościowań A1’ i B1’
Dowód przez podanie kontrprzykładu.
W miejsce zmiennej binarnej A1: Y nie wolno nam wstawić jej wartościowania A1’: Y=1 bo dostaniemy sprzeczność czysto matematyczną.
To jest fałszywa funkcja logiczna Y:
A1”: Y=1 <=> p
… a kiedy zajdzie ~Y?
#
Negujemy A1” dwustronnie:
B1”: ~Y=0 <=> ~p
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Dowód sprzeczności czysto matematycznej:
Powinno być: B1’: ~Y=1 ## Jest: B1”: ~Y=0 (sprzeczność)
Gdzie:
## - różne na mocy definicji
1.6.3 Funkcja logiczna Y stałej binarnej p
Funkcja logiczna Y stałej binarnej p to po prostu prawa Prosiaczka omówione w punkcie 1.4
1.7 Prawo Puchacza dla zdań twierdzących jednoargumentowych
Kod: |
TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1: Y= p # B1: ~Y=~p
## ##
Operator negacji Y=|~p
A2: Y=~p # B2: ~Y= p
## ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Gdzie:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
Prawo Puchacza dla zdań twierdzących jednoargumentowych w języku potocznym:
Funkcje logiczne Y i ~Y opisujące linię x w tabeli TJ dostępne są tylko i wyłącznie w linii x.
Żadna z tych funkcji nie jest dostępna w jakiejkolwiek linii poza linią x
Dowód formalny:
Wybieramy przykładową funkcję logiczną z linii A2B2:
B2: ~Y=p
Sprawdzamy iż funkcji tej nie ma w żadnej innej linii poza linią A2B2.
itd
1.7.1 Jak działa prawo Puchacza?
Poszczególne zdania związane z tabelą TJ możemy wypowiadać losowo, a kodowanie matematyczne wskaże nam miejsce tego zdania w tabeli TJ.
Wypowiedzmy uporządkowane zdania z tabeli TJ mając świadomość że możemy je losowo przestawiać:
Punkt: A1
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
Y = K
Punkt: B1
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K)
~Y = ~K
Punkt: A2
Pani dotrzyma słowa wtedy (Y) i tylko wtedy gdy jutro nie pójdziemy do kina (~K)
Y = ~K
Punkt: B2
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
~Y = K
Punkt: A3
Żarówka świeci
S=1
Prawdą jest (=1), że żarówka świeci (S)
Punkt: B3
Prawo Prosiaczka:
(A3: S=1) = (B3: ~S=0)
Stąd zdanie tożsame do A3.
Punkt: B3
B3: ~S=0
Fałszem jest (=0), że żarówka nie świeci (~S)
Jak widzimy, prawo Prosiaczka działa doskonale
Punkt: A4
Fałszem jest (=0), że żarówka świeci (S)
S=0
Prawo Prosiaczka:
(A4: S=0)=(B4: ~S=1)
Stąd zdanie tożsame do A4
Punkt: B4
B4: ~S=1
Prawdą jest (=1), że żarówka nie świeci (~S)
Jak widzimy, prawo Prosiaczka działa doskonale
1.7.2 Miękkie jedynki i miękkie zera w logice matematycznej
Definicja miękkiej jedynki w logice matematycznej:
W logice matematycznej jedynka jest miękką jedynką, wtedy i tylko wtedy gdy istnieje iterowanie (losowanie) ustawiające na iterowanej pozycji miękkie zero
Definicja miękkiego zera w logice matematycznej:
W logice matematycznej zero jest miękkim zerem, wtedy i tylko wtedy gdy istnieje iterowanie (losowanie) ustawiające na iterowanej pozycji miękką jedynkę
Weźmy przykładowe zdania z linii A1B1.
Pani w przedszkolu wypowiada obietnicę bezwarunkową:
A1.
Jutro pójdziemy do kina
Y=K
Co w logice jedynek oznacza:
Y=1 <=> K=1
Czytamy
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
… a kiedy pani nie dotrzyma słowa (~Y=1)?
#
Negujemy funkcję logiczną A1 stronami.
B1.
~Y=~K
Co w logice jedynek oznacza:
~Y=1 <=> ~K=1
Czytamy:
Pani nie dotrzyma słowa (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
Gdzie:
# - funkcje różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony
Wnioski:
1.
Zauważmy, że w linii A1B1 mamy matematyczny związek między zdaniami A1 i B1 w postaci znaczka #
2.
Na mocy prawa Puchacza po wylosowaniu z otaczającego nas świata zdania A1 albo B1 w linii A1B1 będziemy mieli miękkie jedynki, zaś wszelkie inne zdania poza zdaniami z linii A1B1 przyjmą wartość logiczną miękkiego zera (=0), co oznacza, że nie ma żadnych związków matematycznych między linią A1B1 a jakąkolwiek inną linią w tabeli TJ
3.
Definicja miękkiego zera:
Miękkie zero oznacza, że istnieje iterowania (losowanie) dla którego na pozycji miękkiego zera może pojawić się miękka jedynka.
Przykładowo, jeśli wylosujemy zdanie z linii A2B2 to w tej linii będziemy mieli miękkie jedynki, zaś w linii A1B1 będą miękkie zera.
|
Ostatnio zmieniony przez rafal3006 dnia Sob 17:54, 15 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 15:01, 15 Mar 2025 Temat postu: |
|
|
Nikt tego wysrywu nie będzie czytał.
A swoje puste deklaracje "masz braki" możesz sobie w dupę wsadzić, zaraz obok obietnic kasowania twojej gównianej algebry.
Do tej pory nie udało ci się wskazać mitycznego ~q, a próbujesz pouczać innych.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 15:52, 15 Mar 2025 Temat postu: |
|
|
... i co, zatkało kakao?
Irbisol napisał: | Nikt tego wysrywu nie będzie czytał.
A swoje puste deklaracje "masz braki" możesz sobie w dupę wsadzić, zaraz obok obietnic kasowania twojej gównianej algebry.
Do tej pory nie udało ci się wskazać mitycznego ~q, a próbujesz pouczać innych. |
Wszyscy widzą Irbisolu, że póki co twój mózg nie dorasta do poziomu 9-miesięcznego malucha (pkt. 1.5.2) i nigdy nie dorośnie, dopóki nie przeczytasz ze zrozumieniem mojego postu wyżej.
Od zawsze masz włączony dogmat:
"Wysrywu zwanego algebrą Kubusia nie będę czytał"
Masz wolną wolę i możesz krzyczeć powyższym dogmatem do usranej śmierci ... i pewnie tak będziesz robił, bo to jedyna twoja obrona przed algebrą Kubusia.
... ale nie rozpaczaj, na 100% przejdziesz do klubu AK, bo jak wszyscy ziemscy matematycy przejdą, to jakie będziesz miał wyjście?
P.S.
Bardzo proszę kolejny fragment algebry Kubusia w temacie twojego ~q, którego TOTALNIE nie rozumiesz!
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680049
Algebra Kubusia napisał: |
2.7 Prawo Kłapouchego - kluczowe prawo logiki matematycznej
Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowaną przyczynę p zaś po „to..” mamy zdefiniowany skutek q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt.5.4.1)
Prawo Kłapouchego obowiązuje dla standardu dodatniego w języku potocznym człowieka.
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni. |
... i co, zatkało kakao?
Ostatnio zmieniony przez rafal3006 dnia Sob 17:59, 15 Mar 2025, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 16:47, 15 Mar 2025 Temat postu: |
|
|
Nie, nie zatkało. Wiadomo, że jedynie spierdalanie od tematu ci pozostało.
Jak ci się wskaże, gdzie wywinąłeś orła, to nie polemizujesz z tym, lecz jedynie srasz spamem.
Standard. Ale cóż innego możesz zrobić? Pytanie retoryczne.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 18:10, 15 Mar 2025 Temat postu: |
|
|
Irbisol, mój genialny wróg Nr.1 algebry Kubusia
Irbisol napisał: | Nie, nie zatkało. Wiadomo, że jedynie spierdalanie od tematu ci pozostało.
Jak ci się wskaże, gdzie wywinąłeś orła, to nie polemizujesz z tym, lecz jedynie srasz spamem.
Standard. Ale cóż innego możesz zrobić? Pytanie retoryczne. |
Nie szkodzi, że nie mam z Irbisolem kontaktu - bo dzięki niemu cały czas koryguje AK ... od 15 lat!
Właśnie dopisałem już na początku AK o co chodzi z Irbisolowym ~q.
Ciekawe kiedy Irbisolu zajarzysz, że ten króciutki punk 1.4.7 jest dokładnie w temacie twojego ~q - wymusza identyczny standard dodatni dla wszystkich istot żywych, wymusza jednoznaczne kodowanie naturalnego języka potocznego.
Algebra Kubusia napisał: |
1.4.7 Definicja standardu dodatniego w języku potocznym człowieka
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni. |
Irbisolu, czy zgodzisz się, bym wyjaśnił ci o co chodzi w standardzie dodatnim języka potocznego na konkretnych przykładach?
Pytanie retoryczne:
Ma kto nadzieję, że Irbisol powie
TAK?
Ostatnio zmieniony przez rafal3006 dnia Sob 18:14, 15 Mar 2025, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 19:34, 15 Mar 2025 Temat postu: |
|
|
Do tej pory otrzymywałeś na tego typu pytania wyłącznie jedną odpowiedź.
Nic się nie uczysz.
Gdzie to ~q ?
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 38297
Przeczytał: 16 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 20:49, 15 Mar 2025 Temat postu: |
|
|
I co, zatkało kakao?
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-11175.html#835797
rafal3006 napisał: | Irbisol, mój genialny wróg Nr.1 algebry Kubusia
Właśnie dopisałem już na początku AK o co chodzi z Irbisolowym ~q.
Ciekawe kiedy Irbisolu zajarzysz, że ten króciutki punk 1.4.7 jest dokładnie w temacie twojego ~q - wymusza identyczny standard dodatni dla wszystkich istot żywych, wymusza jednoznaczne kodowanie naturalnego języka potocznego.
Algebra Kubusia napisał: |
1.4.7 Definicja standardu dodatniego w języku potocznym człowieka
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni. |
Irbisolu, czy zgodzisz się, bym wyjaśnił ci o co chodzi w standardzie dodatnim języka potocznego na konkretnych przykładach?
Pytanie retoryczne:
Ma kto nadzieję, że Irbisol powie
TAK?
 |
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-11175.html#835803
Irbisol napisał: | Do tej pory otrzymywałeś na tego typu pytania wyłącznie jedną odpowiedź.
Nic się nie uczysz.
Gdzie to ~q ? |
O co chodzi z tym twoim ~q masz wyjaśnione na samym początku algebry Kubusia.
Algebra Kubusia napisał: |
1.6 Zasady kodowania zdań w operatorach jednoargumentowych
Kod: |
TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1: Y= p # B1: ~Y=~p
## ##
Operator negacji Y=|~p
A2: Y=~p # B2: ~Y= p
## ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Gdzie:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
Uwaga:
Linie A1B1 i A2B2 dotyczą świata żywego w którym kłamstwo (~Y) jest możliwe, zatem tu nie znamy z góry wartości logicznej zdań.
Linie A3B3 i A4B4 dotyczą świata martwego, który z definicji nie może kłamać, zatem tu znamy z góry wartość logiczną zdań 1 albo 0.
1.6.1 Zasady kodowania zdań twierdzących w świecie żywym
Wyłącznie świat żywy ma „wolną wolę” i może kłamać do woli.
Dotyczy wyłącznie linii A1B1 i A2B2 w tabeli TJ
Definicja funkcji logicznej w logice dodatniej (bo Y):
Funkcja logiczna zapisana jest w logice dodatniej (bo Y) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej zapisana jest w logice ujemnej (bo ~Y)
Przykłady: tabela TJ
Definicja logiki jedynek w języku potocznym:
Z logiką jedynek w języku potocznym mamy do czynienia wtedy i tylko wtedy gdy wszelkie zmienne występujące w zdaniu sprowadzone są do wartości logicznej 1.
Jedynki są w logice matematycznej domyślne i możemy je pominąć.
Innymi słowy:
Wszelkie przeczenia w kodowaniu matematycznym muszą być zapisane jawnie
Sprowadzenie wszystkich zmiennych do wartości logicznej 1 umożliwiają prawa Prosiaczka które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej lub stałej binarnej.
(p=1)=(~p=0)
(p=0) = (~p=1)
Przykład:
1.
Jutro nie pójdziemy do kina
Y=~K
Co w logice jedynek oznacza:
Y=1 <=> ~K=1 - to jest logika jedynek bo ~K=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
Prawo Prosiaczka:
(~K=1) = (K=0)
Stąd zapis tożsamy:
Y=1 <=> K=0 - to nie jest logika jedynek bo K=0
Prawo Żyrafy:
Kodowanie zdań twierdzących:
Wszelkie zdania twierdzące dotyczące świata żywego mającego „wolną wolę” kodujemy matematycznie wyłącznie w postaci funkcji logicznych
Y=f(x)
Gdzie:
Y - istota żywa dotrzyma słowa (Y=1)
~Y - istota żywa nie dotrzyma słowa (~Y=1)
Niedozwolone jest kodowanie zdań twierdzących w postaci samego wyrażenia f(x) bowiem prowadzi to do wewnętrznej sprzeczności logiki matematycznej w postaci prawa Grzechotnika (pkt. 1.9.1)
1.6.2 Funkcja logiczna Y zmiennej binarnej p
Definicja funkcji logicznej Y zmiennej binarnej p:
Funkcja logiczna Y zmiennej binarnej p jest poprawnie zbudowana wtedy i tylko wtedy gdy nie zawiera choćby jednego wartościowania w swoim zapisie.
To jest poprawnie zbudowana funkcja logiczna Y:
A1: Y=p
Co w logice jedynek oznacza:
A1’: Y=1 <=> p=1
.. a kiedy zajdzie ~Y?
#
Negujemy funkcję A1 dwustronnie:
B1: ~Y=~p
Co w logice jedynek oznacza:
B1’: ~Y=1 <=> ~p=1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zauważmy, że znaczek # dotyczy wyłącznie funkcji logicznych A1 i B1 oraz nie dotyczy wartościowań A1’ i B1’
Dowód przez podanie kontrprzykładu.
W miejsce zmiennej binarnej A1: Y nie wolno nam wstawić jej wartościowania A1’: Y=1 bo dostaniemy sprzeczność czysto matematyczną.
To jest fałszywa funkcja logiczna Y:
A1”: Y=1 <=> p
… a kiedy zajdzie ~Y?
#
Negujemy A1” dwustronnie:
B1”: ~Y=0 <=> ~p
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Dowód sprzeczności czysto matematycznej:
Powinno być: B1’: ~Y=1 ## Jest: B1”: ~Y=0 (sprzeczność)
Gdzie:
## - różne na mocy definicji
|
Czy już rozumiesz dlaczego opisując matematycznie język potoczny człowieka wszelkie zmienne w zdaniach musimy kodować w standardzie dodatnim.
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni.
I co, zatkało kakao?
Ostatnio zmieniony przez rafal3006 dnia Sob 21:17, 15 Mar 2025, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 16878
Przeczytał: 6 tematów
|
Wysłany: Sob 21:08, 15 Mar 2025 Temat postu: |
|
|
Ale ja cię nie pytam o wyjaśnienia, schizofreniku.
Pytam cię o coś prostszego: wskaż, gdzie tego ~q użyłem. Twierdzisz że użyłem ale do tej pory nie jesteś w stanie wskazać, gdzie.
|
|
Powrót do góry |
|
 |
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|